Abstract. For hot rolling wires, tools are nowadays made of cemented carbides. In service, these rollers suffer from wear and thermal fatigue. Due to the properties of ceramics, their use could cause improvements in tool behaviour. In field tests -when rolling materials with high deformation resistance -cracks developed in the silicon nitride rollers, which grew for a long time period before large parts of the rollers broke apart. In more moderate rolling conditions the rollers operated safely.A FE model is used to analyse the in-service behaviour of cracks in the silicon nitride rollers. For the observed crack path the stress intensity factor of the cracks is determined using the weight function method. It increases up to a crack depth of around 0.35 mm and then decreases again with increasing crack depth. This explains the observed pop-in-type growth of cracks after an overload. Depending on the rolled materials, the popped in cracks have a length of up to 1.2 mm. The further growth of the cracks to a length of several millimetres, which is caused by a fatigue growth mechanism, needs several thousand additional revolutions.
For hot rolling wires of high-alloyed steels or superalloys tools are nowadays made of cemented carbides. In service they suffer from roughening of the surfaces and severe wear, which deteriorates the surface quality of the wires and restricts the lifetime of the tool. Due to their high hardness and good high-temperature properties, improvements of tool behaviour can be expected by the use of ceramic. In this paper the suitability of silicon nitride as material for rolls is investigated.The thermal and mechanical loads in silicon nitride rolls during the hot rolling of steel and superalloy wires are analysed. Although the working temperature can be up to 1100 °C the tensile thermal stresses in the rolls reach only a few percent of the materials strength. But mechanical stresses due to contact stresses may become severe. When rolling wires of superalloys tensile contact stresses in the rolls can reach up to 600 MPa – about 60 % of the characteristic bending strength of the silicon nitride material.Experiments in the rolling mill of Boehler in Kapfenberg confirm these theoretical findings. When rolling high-speed tool steels the silicon nitride rolls were superior to the common hard metal rolls. But when rolling superalloys cracks in the rolls arise. For less demanding applications (driving rollers, guiding rollers) silicon nitride rolls are still routinely used by Boehler in Kapfenberg.In summary, silicon nitride ceramics are well suited as tool material for rolling steel wires, if the rolls are properly manufactured and used. For rolling superalloy wires the ceramic material is at its limit, and a safe operation can only be expected for rolls with a material-based design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.