The antiproliferative effects of an antagonist of growth hormonereleasing hormone (GHRH) JV-1-38 were evaluated in nude mice bearing s.c. xenografts of LNCaP and MDA-PCa-2b human androgen-sensitive and DU-145 androgen-independent prostate cancers. In the androgen-sensitive models, JV-1-38 greatly potentiated the antitumor effect of androgen deprivation induced by surgical castration, but was ineffective when given alone. Thus, in castrated animals bearing MDA-PCa-2b cancers, the administration of JV-1-38 for 35 days virtually arrested tumor growth (94% inhibition vs. intact control, P < 0.01; and 75% vs. castrated control, P < 0.05). The growth of LNCaP tumors was also powerfully suppressed by JV-1-38 combined with castration (83% inhibition vs. intact control, P < 0.01; and 68% vs. castrated control, P < 0.05). However, in androgen-independent DU-145 cancers, JV-1-38 alone could inhibit tumor growth by 57% (P < 0.05) after 45 days. In animals bearing MDA-PCa-2b and LNCaP tumors, the reduction in serum prostatespecific antigen levels, after therapy with JV-1-38, paralleled the decrease in tumor volume. Inhibition of MDA-PCa-2b and DU-145 cancers was associated with the reduction in the expression of mRNA and protein levels of vascular endothelial growth factor. The mRNA expression for GHRH receptor splice variants was found in all these models of prostate cancer. Our results demonstrate that GHRH antagonists inhibit androgen-independent prostate cancers and, after combination with androgen deprivation, also androgensensitive tumors. Thus, the therapy with GHRH antagonist could be considered for the management of both androgen-dependent or -independent prostate cancers.
The antiproliferative effect of JV-1-38 was not associated with the suppression of serum IGF-I and was only partially correlated with the expression of IGF-II and VEGF in PC-3 tumors, suggesting that other mechanisms play a role in the antitumor action of GHRH antagonists. Nevertheless, the stronger inhibition of tumor growth after combined treatment with JV-1-38 and RC-160 indicates that the interference with multiple local stimulatory factors leads to an enhanced inhibition of prostate cancer.
Antagonists of growth hormone-releasing hormone (GHRH) synthesized previously inhibit proliferation of various human cancers, but derivatisation with fatty acids could enhance their clinical efficacy. We synthesized a series of antagonists of GHRH(1-29)NH2 acylated at the N terminus with monocarboxylic or ␣,-dicarboxylic acids containing six to sixteen carbon atoms. These peptides are analogs of prior potent antagonists JV-1-36, JV-1-38, and JV-1-65 with phenylacetyl group at their N terminus. Several new analogs, including MZ-J-7-46 and MZ-J-7-30, more effectively inhibited GHRH-induced GH release in vitro in a superfused rat pituitary system than their parent compound JV-1-36 and had increased binding affinities to rat pituitary GHRH receptors, but they showed weaker inhibition of GH release in vivo than JV-1-36. All antagonists acylated with fatty acids containing 8 -14 carbon atoms inhibited the proliferation of MiaPaCa-2 human pancreatic cancer cells in vitro better than JV-1-36 or JV-1-65. GHRH antagonist MZ-J-7-114 (5 g͞day) significantly suppressed the growth of PC-3 human androgen-independent prostate cancers xenografted into nude mice and reduced serum IGF-I levels, whereas antagonist JV-1-38 had no effect at the dose of 10 g͞day. GHRH antagonists including MZ-J-7-46 and MZ-J-7-114 acylated with octanoic acid and MZ-J-7-30 and MZ-J-7-110 acylated with 1,12-dodecanedicarboxylic acid represent relevant improvements over earlier antagonists. These and previous results suggest that this class of GHRH antagonists might be effective in the treatment of various cancers.antagonistic analogs ͉ cancer therapy ͉ proliferation
We developed a powerful cytotoxic analogue of bombesin AN-215, in which the bombesin (BN)-like carrier peptide is conjugated to 2-pyrrolino doxorubicin (AN-201). Human prostate cancers express high levels of receptors for BN/gastrin releasing peptide (GRP) that can be used for targeted chemotherapy. The effects of targeted chemotherapy with cytotoxic BN analogue AN-215 were evaluated in nude mice bearing subcutaneous xenografts of DU-145, LuCaP-35, MDA-PCa-2b and intraosseous implants of C4-2 human prostate cancers. Intraosseous growth of C4-2 tumors was monitored by serum PSA. BN/GRP receptors were evaluated by 125I-[Tyr4]BN binding assays and RT-PCR. The effects of AN-215 on apoptosis and cell proliferation were followed by histology, and the expression of Bcl-2 and Bax protein was determined by Western blot analysis. Targeted analog AN-215 significantly inhibited growth of subcutaneously implanted DU-145, LuCaP-35 and MDA-PCa-2b prostate cancers by 81% to 91% compared to controls, while cytotoxic radical AN-201 was less effective and more toxic. Serum PSA levels of mice bearing intraosseous C4-2 prostate tumors were significantly reduced. In LuCaP-35 tumors administration of BN antagonist RC-3095 prior to AN-215 blocked the receptors for BN/GRP and inhibited the effects of AN-215. High affinity receptors for BN/GRP and their m-RNA were detected on membranes of all 4 tumor models. Therapy with AN-215, but not with AN-201, decreased the ratio of Bcl-2/Bax in DU-145 and the expression of antiapoptotic Bcl-2 in LuCaP-35 tumors. The presence of BN/GRP receptors on primary and metastatic prostate cancers makes possible targeted chemotherapy with AN-215 for the treatment of this malignancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.