Sequencing of whole cancer genomes has revealed an abundance of recurrent mutations in gene-regulatory promoter regions, in particular in melanoma where strong mutation hotspots are observed adjacent to ETS-family transcription factor (TF) binding sites. While sometimes interpreted as functional driver events, these mutations are commonly believed to be due to locally inhibited DNA repair. Here, we first show that low-dose UV light induces mutations preferably at a known ETS promoter hotspot in cultured cells even in the absence of global or transcription-coupled nucleotide excision repair (NER). Further, by genome-wide mapping of cyclobutane pyrimidine dimers (CPDs) shortly after UV exposure and thus before DNA repair, we find that ETS-related mutation hotspots exhibit strong increases in CPD formation efficacy in a manner consistent with tumor mutation data at the single-base level. Analysis of a large whole genome cohort illustrates the widespread contribution of this effect to recurrent mutations in melanoma. While inhibited NER underlies a general increase in somatic mutation burden in regulatory elements including ETS sites, our data supports that elevated DNA damage formation at specific genomic bases is at the core of the prominent promoter mutation hotspots seen in skin cancers, thus explaining a key phenomenon in whole-genome cancer analyses.
Mutational signatures can reveal properties of underlying mutational processes and are important when assessing signals of selection in cancer. Here, we describe the sequence characteristics of mutations induced by ultraviolet (UV) light, a major mutagen in several human cancers, in terms of extended (longer than trinucleotide) patterns as well as variability of the signature across chromatin states. Promoter regions display a distinct UV signature with reduced TCG > TTG transitions, and genome-wide mapping of UVB-induced DNA photoproducts (pyrimidine dimers) showed that this may be explained by decreased damage formation at hypomethylated promoter CpG sites. Further, an extended signature model encompassing additional information from longer contextual patterns improves modeling of UV mutations, which may enhance discrimination between drivers and passenger events. Our study presents a refined picture of the UV signature and underscores that the characteristics of a single mutational process may vary across the genome.
Mutational signatures can reveal properties of underlying mutational processes and are important when assessing signals of selection in cancer. Here we describe the sequence characteristics of mutations induced by ultraviolet (UV) light, a major mutagen in several human cancers, in terms of extended (longer than trinucleotide) patterns as well as variability of the signature across chromatin states. Promoter regions display a distinct UV signature with reduced TCG>TTG transitions, and genome-wide mapping of UVB-induced DNA photoproducts (pyrimidine dimers) showed that this may be explained by decreased damage formation at hypomethylated promoter CpG sites. Further, an extended signature model encompassing additional information from longer patterns improves modeling of UV mutation rate, which may enhance discrimination between drivers and passenger events. Our study presents a refined picture of the UV signature and underscores that the characteristics of a single mutational process may vary across the genome.
Small intestine neuroendocrine tumor (SI-NET), the most common cancer of the small bowel, often displays a curious multifocal phenotype with several tumors clustered together in a limited intestinal segment. SI-NET also shows an unusual absence of driver mutations explaining tumor initiation and metastatic spread. The evolutionary trajectories that underlie multifocal SI-NET lesions could provide insight into the underlying tumor biology, but this question remains unresolved. Here, we determine the complete genome sequences of 61 tumors and metastases from 11 patients with multifocal SI-NET, allowing for elucidation of phylogenetic relationships between tumors within single patients. Intra-individual comparisons revealed a lack of shared somatic single-nucleotide variants among the sampled intestinal lesions, supporting an independent clonal origin. Furthermore, in three of the patients, two independent tumors had metastasized. We conclude that primary multifocal SI-NETs generally arise from clonally independent cells, suggesting a contribution from a cancer-priming local factor.
Small intestine neuroendocrine tumor (SI-NET), the most common cancer of the small bowel, often displays a curious multifocal phenotype with several intestinal tumors centered around a regional lymph node metastasis, yet the typical path of evolution of these lesions remains unclear. Here, we determined the complete genome sequences of 37 tumors from 5 patients with multifocal SI-NET, allowing elucidation of phylogenetic relationships between multiple intestinal tumors and metastases in individual patients. Notably, lack of shared somatic mutational events strongly supports that the intestinal tumors were of independent clonal origin. Furthermore, adjacent lymph node metastases arose from a single, typically centrally located, intestinal tumor. Thus, we propose that multifocal SI-NETs form primarily by independent somatic evolution rather than local metastatic spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.