Building ontologies in a collaborative and increasingly community-driven fashion has become a central paradigm of modern ontology engineering. This understanding of ontologies and ontology engineering processes is the result of intensive theoretical and empirical research within the Semantic Web community, supported by technology developments such as Web 2.0. Over 6 years after the publication of the first methodology for collaborative ontology engineering, it is generally acknowledged that, in order to be useful, but also economically feasible, ontologies should be developed and maintained in a community-driven manner, with the help of fully-fledged environments providing dedicated support for collaboration and user participation. Wikis, and similar communication and collaboration platforms enabling ontology stakeholders to exchange ideas and discuss modeling decisions are probably the most important technological components of such environments. In addition, process-driven methodologies assist the ontology engineering team throughout the ontology life cycle, and provide empirically grounded best practices and guidelines for optimizing ontology development results in real-world projects. The goal of this article is to analyze the state of the art in the field of collaborative ontology engineering. We will survey several of the most outstanding methodologies, methods and techniques that have emerged in the last years, and present the most popular development environments, which can be utilized to carry out, or facilitate specific activities within the methodologies. A discussion of the open issues identified concludes the survey and provides a roadmap for future research and development in this lively and promising field.
Wikidata promises to reduce factual inconsistencies across all Wikipedia language versions. It will enable dynamic data reuse and complex fact queries within the world's largest knowledge database. Studies of the existing participation patterns that emerge in Wikidata are only just beginning. What delineates most of the contributions in the system has not yet been investigated. Is it an inheritance from the Wikipedia peer-production system or the proximity of tasks in Wikidata that have been studied in collaborative ontology engineering? As a first step to answering this question, we performed a cluster analysis of participants' content editing activities. This allowed us to blend our results with typical roles found in peer-production and collaborative ontology engineering projects. Our results suggest very specialised contributions from a majority of users. Only a minority, which is the most active group, participate all over the project. These users are particularly responsible for developing the conceptual knowledge of Wikidata. We show the alignment of existing algorithmic participation patterns with these human patterns of participation. In summary, our results suggest that Wikidata rather supports peer-production activities caused by its current focus on data collection. We hope that our study informs future analyses and developments and, as a result, allows us to build better tools to support contributors in peer-production-based ontology engineering.
Designing an effective and sustainable citizen science (CS) project requires consideration of a great number of factors. This makes the overall process unpredictable, even when a sound, user-centred design approach is followed by an experienced team of UX designers. Moreover, when such systems are deployed, the complexity of the resulting interactions challenges any attempt to generalisation from retrospective analysis. In this paper, we present a case study of the largest single platform of citizen driven data analysis projects to date, the Zooniverse. By eliciting, through structured reflection, experiences of core members of its design team, our grounded analysis yielded four sets of themes, focusing on Task Specificity, Community Development, Task Design and Public Relations and Engagement. For each, we propose a set of design claims (DCs), drawing comparisons to the literature on crowdsourcing and online communities to contextualise our findings.
Most of the semantic content available has been generated automatically by using annotation services for existing content. Automatic annotation is not of sufficient quality to enable focused search and retrieval: either too many or too few terms are semantically annotated. User-defined semantic enrichment allows for a more targeted approach. We developed a tool for semantic annotation of digital documents and conducted an end-user study to evaluate its acceptance by and usability for non-expert users. This paper presents the results of this user study and discusses the lessons learned about both the semantic enrichment process and our methodology of exposing non-experts to semantic enrichment.
We conducted a quantitative analysis of ten citizen science projects hosted on the Zooniverse platform, using a data set of over 50 million activity records and more than 250,000 users, collected between December 2010 and July 2013. We examined the level of participation of users in Zooniverse discussion forums in relation to their contributions toward the completion of scientific (micro-)tasks. As Zooniverse is home to a multitude of projects, we were also interested in the emergence of cross-projects effects, and identified those project characteristics, most importantly the subject domain and the duration of a project. We also looked into the adoption of expert terminology, showing that this phenomenon is dependent on the scientific domain which a project addresses but also affected by how the communication features are actually used by a community. This is the first study of this kind in this increasingly important class of online community, and its insights will inform the design and further development of the Zooniverse platform, and of citizen science systems as a whole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.