The fluorescence spectra of dye solutions change their spectral signature with temperature. This effect is frequently used for temperature imaging in liquids and sprays based on two-color laser-induced fluorescence (2cLIF) measurements by simultaneously detecting the fluorescence intensity in two separate wavelength channels resulting in a temperature-sensitive ratio. In this work, we recorded temperature-dependent absorption and fluorescence spectra of solutions of five laser dyes (coumarin 152, coumarin 153, rhodamine B, pyrromethene 597, and DCM) dissolved in ethanol, a 35/65 vol.% mixture of ethanol/2-ethylhexanoic acid, ethanol/hexamethylsiloxane, o-xylene, and 1-butanol to investigate their potential as temperature tracers in evaporating and burning sprays. The dissolved tracers were excited at either 266, 355, and 532 nm (depending on the tracer) for temperatures between 296 and 393 K (depending on the solvent) and for concentrations ranging between 0.1 and 10 mg/l. Absorption and fluorescence spectra of the tracers were investigated for their temperature dependence, the magnitude of signal re-absorption, the impact of different solvents, and varying two-component solvent compositions. Based on the measured fluorescence spectra, the tracers were analyzed for their 2cLIF temperature sensitivity in the respective solvents. Coumarin 152 showed for single-component solvents the overall best spectroscopic properties for our specific measurement situation related to temperature imaging measurements in spray-flame synthesis of nanoparticles as demonstrated previously in ethanol spray flames [Exp. Fluids 61, 77 (2020)10.1007/s00348-020-2909-9].
Tomographic imaging using multi-simultaneous measurements (TIMes) of spontaneous light emission was performed on various operating conditions of the SpraySyn burner to analyse the flame morphology and its potential impact on spray flame pyrolysis. Concurrent instantaneous and time-averaged three-dimensional measurements of CH* chemiluminescence (flame front indicator) and atomic Na emission from NaCl dissolved in the injected combustible liquid (related to hot burnt products of the spray flame) were reconstructed employing a 29-camera setup. Overlapping regions of CH* and Na are presented using isosurface visualisation, local correlation coefficient fields and joint probability distributions. The instantaneous results reveal the complex nature of the reacting flow and regions of interaction between the flame front with the hot gases that originate from the spray stream. The averaged reconstructions show that the spray flames tested are slightly asymmetric near the burner exit but develop into symmetric bell-shaped distributions at downstream locations. The changes in the flame structure for different operating conditions are analysed in light of previous studies, helping in the better understanding of the nanoparticle synthesis process. Furthermore, the importance of using measurements from two views for significantly improved alignment of the burner based on the originally proposed procedure are discussed in light of the reconstructions. This is an important aspect since the SpraySyn is intended for use as a well-defined standardised burner for nanoparticle synthesis, which is being investigated numerically and experimentally across different research groups.
We recorded temperahrre-dependent fluorescence spectra of nine laser dyes for their suitability for dvo-color laser-induced fluorescence (2cLIF) thermometry in liquid sprays. Due to the high temperahrre sensitivity and a large Stokes shift, coumarin 152 hrrned out to be most suited. Temperature imaging is demonstrated in an ethanol spray flame.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.