DNA and histone modifications exhibit noticeable impacts on gene expression 1 . Being the most prevalent internal modification in mRNA, N 6 -Methyladenosine (m 6 A) mRNA modification emerges as an important post-transcriptional mechanism of gene regulation 2 - 4 and plays critical roles in various normal and pathological bioprocesses 5 - 12 . However, how m 6 A is precisely and dynamically deposited in the transcriptome remains elusive. Here we report that H3K36me3 histone modification, a marker for transcription elongation, globally guides m 6 A modification. We found that m 6 A modifications enrich in the vicinity of H3K36me3 peaks, and are reduced globally when cellular H3K36me3 is depleted. Mechanistically, H3K36me3 is recognized and bound directly by METTL14, a critical component of the m 6 A methyltransferase complex (MTC), which in turn facilitates the binding of the m 6 A MTC to adjacent RNA polymerase II, and thereby delivering the m 6 A MTC to actively transcribed nascent RNAs to deposit m 6 A co-transcriptionally. In mouse embryonic stem cells, phenocopying Mettl14 silencing, H3K36me3 depletion also induces m 6 A reduction transcriptome-wide and in pluripotency transcripts, resulting in increased cell stemness. Collectively, our studies reveal the critical roles of H3K36me3 and METTL14 in determining precise and dynamic m 6 A deposition in mRNA, and uncover another layer of gene expression regulation involving crosstalk between histone modification and RNA methylation.
Highlights d Development of two potent FTO inhibitors with IC 50 values in the low nanomolar range d KD of FTO or pharmacological inhibition of FTO suppresses LSC/LIC self-renewal d Targeting FTO suppresses immune checkpoint gene expression and immune evasion d Targeting FTO by potent inhibitors holds therapeutic promise against various cancers
B-lymphoid transcription factors (e.g. PAX5, IKZF1) are critical for early B-cell development1–2, yet genetic lesions occur in >80% of cases of B-cell acute lymphoblastic leukemia (ALL)3–4. The significance of these lesions in ALL remained unclear. Combining ChIP-seq and RNA-seq studies, we identified a novel B-lymphoid program for transcriptional repression of glucose and energy supply. Our metabolic analyses revealed that PAX5 and IKZF1 enforce a state of chronic energy deprivation, resulting in constitutive activation of the energy-stress sensor AMPK5–7. Dominant-negative mutants of PAX5 and IKZF1 relieved glucose and energy restriction. Studying a transgenic pre-B ALL mouse model, heterozygous deletion of Pax5 increased glucose uptake and ATP-levels by >25-fold. Reconstitution of PAX5 and IKZF1 in pre-B ALL patient samples restored a non-permissive state and induced energy crisis and cell death. A CRISPR/Cas9-based screen of PAX5- and IKZF1- transcriptional targets identified NR3C1 (glucocorticoid receptor)8, TXNIP (glucose feedback sensor)9 and CNR2 (cannabinoid receptor)10 as central effectors of B-lymphoid restriction of glucose and energy supply. Interestingly, transport-independent lipophilic methyl-conjugates of pyruvate and TCA cycle metabolites bypassed the gatekeeper function of PAX5 and IKZF1 and readily enabled leukemic transformation. Conversely, pharmacological TXNIP- and CNR2-agonists and a small molecule AMPK-inhibitor strongly synergized with glucocorticoids, identifying TXNIP, CNR2 and AMPK as potential therapy-targets. Furthermore, our results provide a mechanistic explanation for the empiric finding that glucocorticoids are effective in the treatment of B-lymphoid but not myeloid malignancies. We conclude that B-lymphoid transcription factors function as metabolic gatekeepers by limiting the amount of cellular ATP to levels that are insufficient for malignant transformation.
Hypoxia in tumors is generally associated with chemoresistance and radioresistance. However, the correlation between the heterodimeric hypoxia-inducible factor-1 (HIF-1) and the multidrug resistance transporter P-glycoprotein (P-gp) has not been investigated. Herein, we demonstrate that with increasing size of DU-145 prostate multicellular tumor spheroids the pericellular oxygen pressure and the generation of reactive oxygen species decreased, whereas the alpha-subunit of HIF-1 (HIF-1alpha) and P-gp were up-regulated. Furthermore, P-gp was up-regulated under experimental physiological hypoxia and chemical hypoxia induced by either cobalt chloride or desferrioxamine. The pro-oxidants H2O2 and buthionine sulfoximine down-regulated HIF-1alpha and P-gp, whereas up-regulation was achieved with the radical scavengers dehydroascorbate, N-acetylcysteine, and vitamin E. The correlation of HIF-1alpha and P-gp expression was validated by the use of hepatoma tumor spheroids that were either wild type (Hepa1) or mutant (Hepa1C4) for aryl hydrocarbon receptor nuclear translocator (ARNT), i.e., HIF-1beta. Chemical hypoxia robustly increased HIF-1alpha as well as P-gp expression in Hepa1 tumor spheroids, whereas no changes were observed in Hepa1C4 spheroids. Hence, our data demonstrate that expression of P-gp in multicellular tumor spheroids is under the control of HIF-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.