BackgroundThe TGF family plays a key role in bone homeostasis. Systemic or topic application of proteins of this family apparently positively affects bone healing in vivo. However, patients with chronic inflammation, having increased TGF-β1 serum-levels, often show reduced bone mineral content and disturbed bone healing. Therefore, we wanted to identify intracellular mechanisms induced by chronic presence of TGF-β1 and their possible role in bone homeostasis in primary human osteoblasts.Methodology/Principal FindingsOsteoblasts were isolated from femur heads of patients undergoing total hip replacement. Adenoviral reporter assays showed that in primary human osteoblasts TGF-β1 mediates its signal via Smad2/3 and not Smad1/5/8. It induces proliferation as an intermediate response but decreases AP-activity and inorganic matrix production as a late response. In addition, expression levels of osteoblastic markers were strongly regulated (AP↓; Osteocalcin↓; Osteopontin↑; MGP↓; BMP 2↓; BSP2↓; OSF2↓; Osteoprotegerin↓; RANKL↑) towards an osteoclast recruiting phenotype. All effects were blocked by inhibition of Smad2/3 signaling with the Alk5-Inhibitor (SB431542). Interestingly, a rescue experiment showed that reduced AP-activities did not recover to base line levels, even 8 days after stopping the TGF-β1 application.Conclusions/SignificanceIn spite of the initial positive effects on cell proliferation, it is questionable if continuous Smad2/3 phosphorylation is beneficial for bone healing, because decreased AP-activity and BMP2 levels indicate a loss of function of the osteoblasts. Thus, inhibition of Smad2/3 phosphorylation might positively influence functional activity of osteoblasts in patients with chronically elevated TGF-β1 levels and thus, could lead to an improved bone healing in vivo.
Background Postoperative C-reactive protein (CRP) levels in serum appear to reflect surgical trauma. We examined CRP levels after different types of surgery in hip fractures.Methods We studied the CRP response after 349 operative procedures in proximal femur fractures with a normal postoperative course. 5 different operative techniques were used: 3-4 percutaneous cancellous screws, dynamic hip screw (DHS), proximal femur nail (PFN), hemiarthroplasty (HA), and total hip arthroplasty (THA).Results Peak CRP levels were reached on the second postoperative day in each group (medians: screws 8.7, DHS 12, PFN 14, HA 16, THA 16 mg/dL). Significant differences were found between screws and all others, and between DHS and arthroplasties.Interpretation CRP levels following surgical trauma can be used to quantify the degree of tissue damage and invasiveness of a procedure and reflect the perioperative stress experienced by the patient.
Smokers frequently suffer from impaired fracture healing often due to poor bone quality and stability. Cigarette smoking harms bone cells and their homeostasis by increased formation of reactive oxygen species (ROS). The aim of this study was to investigate whether Quercetin, a naturally occurring antioxidant, can protect osteoblasts from the toxic effects of smoking. Human osteoblasts exposed to cigarette smoke medium (CSM) rapidly produced ROS and their viability decreased concentration- and time-dependently. Co-, pre- and postincubation with Quercetin dose-dependently improved their viability. Quercetin increased the expression of the anti-oxidative enzymes heme-oxygenase- (HO-) 1 and superoxide-dismutase- (SOD-) 1. Inhibiting HO-1 activity abolished the protective effect of Quercetin. Our results demonstrate that CSM damages human osteoblasts by accumulation of ROS. Quercetin can diminish this damage by scavenging the radicals and by upregulating the expression of HO-1 and SOD-1. Thus, a dietary supplementation with Quercetin could improve bone matter, stability and even fracture healing in smokers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.