This paper reviews predictive inference and feature selection for generalized linear models with scarce but high-dimensional data. We demonstrate that in many cases one can benefit from a decision theoretically justified two-stage approach: first, construct a possibly non-sparse model that predicts well, and then find a minimal subset of features that characterize the predictions. The model built in the first step is referred to as the reference model and the operation during the latter step as predictive projection. The key characteristic of this approach is that it finds an excellent tradeoff between sparsity and predictive accuracy, and the gain comes from utilizing all available information including prior and that coming from the left out features. We review several methods that follow this principle and provide novel methodological contributions. We present a new projection technique that unifies two existing techniques and is both accurate and fast to compute. We also propose a way of evaluating the feature selection process using fast leave-one-out cross-validation that allows for easy and intuitive model size selection. Furthermore, we prove a theorem that helps to understand the conditions under which the projective approach could be beneficial. The key ideas are illustrated via several experiments using simulated and real world data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.