Background:
TP (thromboxane A
2
receptor) plays an eminent role in the pathophysiology of endothelial dysfunction and cardiovascular disease. Moreover, its expression is reported to increase in the intimal layer of blood vessels of cardiovascular high-risk individuals. Yet it is unknown, whether TP upregulation per se has the potential to affect the homeostasis of the vascular endothelium.
Methods:
We combined global transcriptome analysis, lipid mediator profiling, functional cell analyses, and in vivo angiogenesis assays to study the effects of endothelial TP overexpression or knockdown/knockout on the angiogenic capacity of endothelial cells in vitro and in vivo.
Results:
Here we report that endothelial TP expression induces COX-2 (cyclooxygenase-2) in a G
i/o
- and G
q/11
-dependent manner, thereby promoting its own activation via the auto/paracrine release of TP agonists, such as PGH2 (prostaglandin H
2
) or prostaglandin F
2
but not TxA2 (thromboxane A
2
). TP overexpression induces endothelial cell tension and aberrant cell morphology, affects focal adhesion dynamics, and inhibits the angiogenic capacity of human endothelial cells in vitro and in vivo, whereas TP knockdown or endothelial-specific TP knockout exerts opposing effects. Consequently, this TP-dependent feedback loop is disrupted by pharmacological TP or COX-2 inhibition and by genetic reconstitution of PGH
2
-metabolizing prostacyclin synthase even in the absence of functional prostacyclin receptor expression.
Conclusions:
Our work uncovers a TP-driven COX-2–dependent feedback loop and important effector mechanisms that directly link TP upregulation to angiostatic TP signaling in endothelial cells. By these previously unrecognized mechanisms, pathological endothelial upregulation of the TP could directly foster endothelial dysfunction, microvascular rarefaction, and systemic hypertension even in the absence of exogenous sources of TP agonists.
Compounds targeting serotonin (5-HT) are widely used as antidepressants. However, the role of 5-HT in mediating the effects of electroconvulsive seizure (ECS) therapy remains undefined. Using Tph2 mice depleted of brain 5-HT, we studied the effects of ECS on behavior and neurobiology. ECS significantly prolonged the start latency in the elevated O-Maze test, an effect that was abolished in Tph2 mice. Furthermore, in the absence of 5-HT, the ECS-induced increase in adult neurogenesis and in brain-derived neurotrophic factor signaling in the hippocampus were significantly reduced. Our results indicate that brain 5-HT critically contributes to the neurobiological responses to ECS.
Serotonin (5-hydroxytryptamine, 5-HT) is a crucial signal in the neurogenic niche of the hippocampus, where it is involved in antidepressant action. Here, we utilized a new transgenic rat model (TetO-shTPH2), where brain 5-HT levels can be acutely altered based on doxycycline (Dox)-inducible shRNA-expression. On/off stimulations of 5-HT concentrations might uniquely mirror the clinical course of major depression (e.g., relapse after discontinuation of antidepressants) in humans. Specifically, we measured 5-HT levels, and 5-HT metabolite 5-HIAA, in various brain areas following acute tryptophan hydroxylase 2 (Tph2) knockdown, and replenishment, and examined behavior and proliferation and survival of newly generated cells in the dentate gyrus. We found that decreased 5-HT levels in the prefrontal cortex and raphe nuclei, but not in the hippocampus of TetO-shTPH2 rats, lead to an enduring anxious phenotype. Surprisingly, the reduction in 5-HT synthesis is associated with increased numbers of BrdU-labeled cells in the dentate gyrus. At 3 weeks of Tph2 replenishment, 5-HT levels return to baseline and survival of newly generated cells is unaffected. We speculate that the acutely induced decrease in 5-HT concentrations and increased neurogenesis might represent a compensatory mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.