The Burren region in western Ireland contains an almost continuous record of Viséan (Middle Mississippian) carbonate deposition extending from Chadian to Brigantian times, represented by three formations: the Chadian to Holkerian Tubber Formation, the Asbian Burren Formation and the Brigantian Slievenaglasha Formation. The upper Viséan (Holkerian-Brigantian) platform carbonate succession of the Burren can be subdivided into six distinct depositional units outlined below. A Cf5 Zone (Holkerian) assemblage of microfossils is recorded from the Tubber Formation at Black Head, but in the Ballard Bridge section the top of the formation has Cf6 Zone (Asbian) foraminiferans. A typical upper Asbian Rugose Coral Assemblage G near the top of the Burren Formation is replaced by a lower Brigantian Rugose Coral Assemblage H in the Slievenaglasha Formation. A similar change in the foraminiferans and calcareous algae at this Asbian-Brigantian formation boundary is recognized by the presence of upper Asbian Cf6 Subzone taxa in the Burren Formation including Cribrostomum lecomptei, Koskinobigenerina sp., Bradyina rotula and Howchinia bradyana, and in the Slievenaglasha Formation abundant Asteroarchaediscus spp., Neoarchaediscus spp. and Fasciella crustosa of the Brigantian Cf6 Subzone. The uppermost beds of the Slievenaglasha Formation contain a rare and unusual foraminiferal assemblage containing evolved archaediscids close to tenuis stage indicating a late Brigantian age.
An integrated study of borehole data and outcrop of Mississippian (late Tournaisian to late Viséan) rocks in Co. (County) Galway, western Ireland has enabled a more detailed geological map and lithostratigraphy to be constructed for the region. Several carbonate formations have been distinguished by microfacies analysis and their precise ages established by micropalaeontological investigations using foraminifers and calcareous algae. In addition, palaeogeographic maps have been constructed for the late Tournaisian, and early to late Viséan intervals in the region. The oldest marine Mississippian (late Tournaisian) deposits are recorded in the south of the study region from the Loughrea/Tynagh area and further south in the Gort Borehole; they belong to the Limerick Province. They comprise the Lower Limestone Shale Group succeeded by the Ballysteen Group, Waulsortian Limestone and Kilbryan Limestone Formations. These rocks were deposited in increasing water depth associated with a transgression that moved northwards across Co. Galway. In the northwest and north of the region, marginal marine and non-marine Tournaisian rocks are developed, with a shoreline located NW of Galway City (Galway High). The central region of Co. Galway has a standard Viséan marine succession that can be directly correlated with the Carrick-on-Shannon succession in counties Leitrim and Roscommon to the northeast and east as far as the River Shannon. It is dominated by shallow-water limestones (Oakport, Ballymore and Croghan Limestone Formations) that formed the Galway-Roscommon Shelf. This facies is laterally equivalent to the Tubber Formation to the south which developed on the Clare-Galway Shelf. In the southeast, basinal facies of the Lucan Formation accumulated in the Athenry Basin throughout much of the Viséan. This basin formed during a phase of extensional tectonics in the early Viséan and was probably connected to the Tynagh Basin to the east. In the late Viséan, shallow-water limestones of the Burren Formation extend across much of the southern part of the region. They are characterized by the presence of rich concentrations of large brachiopod shells and colonial coral horizons which developed in predominantly high-energy conditions. These limestones also exhibit palaeokarstic surfaces and palaeosols which formed during regressive conditions of glacio-eustatically controlled cyclicity. Locally, slightly deeper water, lower energy conditions developed on the shelf with the formation of rare bryozoan-rich mud-mounds. Deep-water basinal facies were maintained in the central and southeastern parts of the region between the two shelves with the persistence of the Lucan Formation. Active syn-sedimentary faulting influenced deposition in the Viséan and interfingering of basinal sediments with slumps and shallow-water shelf carbonates are recognized.
Magmatic activity associated with the Munster Basin has been more widespread than previously reported. The Munster Basin is a substantial sedimentary basin, and towards the end of its extensional phase of development, at the beginning of the Variscan orogeny in Ireland, numerous intrusions were emplaced into consolidated Upper Devonian and Lower Carboniferous sediments on the Beara Peninsula. One hundred and sixty-four sills and dykes have been mapped which are subalkaline to alkaline in nature. Two separate suites have been identi®ed. The northern suite comprises subalkaline basalts of Cod's Head and Dursey Island which are intruded into Devonian Red Beds, and the southern suite comprises alkali basalts, trachytes and phonolites which crop out along 9 km of the south coast of the Beara Peninsula and are suggested as Brigantian in age. They are intruded into Devonian Red Beds and marine Lower Carboniferous strata and are therefore later than the tholeiitic magmatism on the Iveragh peninsula to the north. The alkaline magmatism on Beara was induced by lithospheric thinning and controlled partly by pre-existing zones of weakness in the Caledonide crust and partly by fracture zones that developed parallel to the Munster Basin margin as it subsided. In contrast to the Iveragh Peninsula, the stretching factor for the Beara lithosphere was never large enough to lead to the production of tholeiitic magmas.
The following paper is intended as a review of the magmatism in the Munster Basin and an initial attempt to link it with the basin’s history. During the initiation, evolution and inversion of the Devono-Carboniferous Munster Basin magmatic activity was widespread, although small in volume. The episodic occurrence and diversity of the magmatism gives insights into the basement involvement and structural controls relating to the basin’s history. The differences in composition, location and structural relationship of the magmatic bodies are used as indicators for the timing of their emplacement and their relationship to the basin’s evolution. On the western Beara Peninsula in SW Ireland alone, more than 160 sheet-like intrusions, a wide variety of tuff bands and a deep-seated pipe-like structure of lamprophyric affinity occur. Other centres of magmatism in the basin are the Lough Guitane area, where rhyolitic lava flows and acidic pyroclastic rocks are associated with contemporaneous basin faults, and the Valentia Harbour area, where doleritic sills are associated with a volcanic breccia. A rhyodacitic tuff can be traced as far as St Finan’s Bay on the western shore of the Iveragh Peninsula. The chemical composition of the extrusive and intrusive magmatic bodies ranges from tholeiitic dolerites (Valentia Harbour) and subalkaline rhyolites (Lough Guitane) in Mid-Devonian time to subalkaline basalts and tuffs (e.g. Beara Peninsula) in Late Devonian time. In Late Carboniferous and possibly Permian time alkali basalts, trachytes and phonolites (e.g. Beara Peninsula) occur. The igneous activity in the Munster Basin is linked to the basin’s history by the interaction between active faults and fractures opening up during various stages of stress imposed on the basin and exploitation of these faults and fractures by rising magma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.