Viticultural practices and landscape composition are the main drivers influencing biological pest control in vineyards. Predatory mites, mainly phytoseiid (Phytoseiidae) and tydeoid mites (Tydeidae), are important to control phytophagous mites (Tetranychidae and Eriophyidae) on vines. In the absence of arthropod prey, pollen is an important food source for predatory mites. In 32 paired vineyards located in Burgenland/Austria, we examined the effect of landscape composition, management type (organic/integrated), pesticide use, and cover crop diversity of the inter-row on the densities of phytoseiid, tydeoid, and phytophagous mites. In addition, we sampled pollen on vine leaves. Typhlodromus pyri Scheuten was the main phytoseiid mite species and Tydeus goetzi Schruft the main tydeoid species. Interestingly, the area-related acute pesticide toxicity loading was higher in organic than in integrated vineyards. The densities of phytoseiid and tydeoid mites was higher in integrated vineyards and in vineyards with spontaneous vegetation. Their population also profited from an increased viticultural area at the landscape scale. Eriophyoid mite densities were extremely low across all vineyards and spider mites were absent. Biological pest control of phytophagous mites benefits from less intensive pesticide use and spontaneous vegetation cover in vineyard inter-rows, which should be considered in agri-environmental schemes.
Grape powdery mildew caused by Erysiphe necator is a limiting factor in grape production. In order to develop effective management strategies, the factors influencing the survival of the fungus need to be identified and characterized accordingly. For this purpose, we focused on the effect of weather conditions during overwintering on the survival and viability of ascospores. In spring 2017 and 2018, grape leaf litter and bark samples were collected and examined to determine the density of chasmothecia and the viability of ascospores in various Austrian vine growing regions. There were obvious differences in the amounts of chasmothecia between both years and all examined vineyards. Lower quantities of chasmothecia were detected on the exfoliating bark compared to leaf litter, with up to 37% of chasmothecia containing viable ascospores. In comparison, chasmothecia from leaf litter showed a lower viability (up to 5%). The number of viable ascospores per head of vine ranged from 0 to 351 and from 0 to 251 in 2017 and 2018, respectively, and showed partly a strong variation within one location in both years. The infectivity of ascospores on detached leaves was confirmed. In a survival experiment, chasmothecia, when incubated at 7 °C, released more viable ascospores than chasmothecia incubated at 17 °C. After an incubation period of 30 weeks, only chasmothecia stored at the lower temperature contained viable ascospores. However, the mean temperature differences of 0.1 to 1.2 °C during the period of formation of chasmothecia to bud break in both years and six investigated areas did not explain differences in the viability of the ascospores. Differences in vineyard management seem to be of particular importance here.
Ascospores of grape powdery mildew (Erysiphe necator Schw.) play a crucial role in the disease onset in spring in many vine-growing areas. We investigated the physiological maturation of chasmothecia and the time of the first potential ascospore release in three grape-growing areas in Austria by providing standardized conditions for ascospore release in the laboratory and excluding the environmental influence for the release itself. In the overwintering season 2017/2018, the potential ascospore release started in March 2018 in all three investigated wine-growing areas, while in 2018/19, the potential ascospore release was already possible in autumn 2018. Autumn 2018 was characterized by higher temperatures than autumn 2017. We related accumulated degree days (base 8 °C) after chasmothecia formation with the time of first potential chasmothecia dehiscence and found that more than 480 degree days are necessary to reach physiological maturity of chasmothecia. Temperature significantly influenced the dynamics of the potential of ascospore release. More than 50% of the total potential of ascospore release occurred before bud break in both years. Furthermore, weather factors affecting the actual ascospore release in the field were studied. Precipitation and leaf wetness showed a significant positive correlation with ascospore release in the vineyard. In contrast to the potential release, only a small percentage of actual release in the field occurred before bud break, while 84 and 95% of total trapped ascospores were found between bud break and flowering in 2018 and 2019, respectively. Our results reveal that the potential release and actual release have to be combined to predict ascospore release in spring.
BACKGROUND A reduction in chasmothecia, an important inoculum of grape powdery mildew (Erysiphe necator Schwein.), is essential for disease control in vineyards; the use of fungicides during the formation of chasmothecia on vine leaves, late in the growing season, may accomplish this. Inorganic fungicides, such as sulphur, copper, and potassium bicarbonate, are very useful for this purpose because of their multisite mode of action. The aim of this study was to evaluate chasmothecia reduction using different fungicide applications late in the growing season in commercially managed vineyards and in an exact application trial. RESULTS Chasmothecia on vine leaves were reduced in commercial vineyards by four copper (P = 0.01) and five potassium bicarbonate (P = 0.026) applications. The positive effect of potassium bicarbonate was also confirmed in the application trial, where two applications showed lower chasmothecia numbers than the control (P = 0.002). CONCLUSION The application of inorganic fungicides reduced the amount of chasmothecia as the primary inoculum source. Potassium bicarbonate and copper are of further interest for disease control as these fungicides can be used by organic and conventional wine growers. The application of these fungicides should be carried out as late as possible before harvest to reduce chasmothecia formation and, consequently, the potential for powdery mildew infestation in the subsequent season. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.