CPEB (cytoplasmic polyadenylation element-binding protein) is an important regulator of translation in oocytes and neurons. Although previous studies of CPEB in late Xenopus oocytes involve the eIF4E-binding protein maskin as the key factor for the repression of maternal mRNA, a second mechanism must exist, since maskin is absent earlier in oogenesis. Using co-immunoprecipitation and gel filtration assays, we show that CPEB specifically interacts, via protein/protein interactions, with the RNA helicase Xp54, the RNA-binding proteins P100(Pat1) and RAP55, the eIF4E-binding protein 4E-T, and an eIF4E protein. Remarkably, these CPEB complex proteins have been characterized, in one or more organism, as P-body, maternal, or neuronal granule components. We do not detect interactions with eIF4E1a, the canonical cap-binding factor, eIF4G, or eIF4A or with proteins expressed late in oogenesis, including maskin, PARN, and 4E-BP1. The eIF4E protein was identified as eIF4E1b, a close homolog of eIF4E1a, whose expression is restricted to oocytes and early embryos. Although eIF4E1b possesses all residues required for cap and eIF4G binding, it binds m 7 GTP weakly, and in pull-down assays, rather than binding eIF4G, it binds 4E-T, in a manner independent of the consensus eIF4E-binding site, YSKEELL. Wild type and Y-A mutant 4E-T (which binds eIF4E1b but not eIF4E1a), when tethered to a reporter mRNA, represses its translation in a cap-dependent manner, and injection of eIF4E1b antibody accelerates meiotic maturation. Altogether, our data suggest that CPEB, partnered with several highly conserved RNA-binding partners, inhibits protein synthesis in oocytes using a novel pairing of 4E-T and eIF4E1b.Selective protein synthesis in oocytes, eggs, and early embryos of many organisms drives several critical aspects of early development, including meiotic maturation and entry into mitosis, establishment of embryonic axes, and cell fate determination. Protein synthesis is usually regulated at the initiation stage, mediated by the 5Ј m 7 GpppN mRNA cap structure bound by the translation initiation complex eIF4F, composed of eIF4E, the cap-binding protein, the RNA helicase eIF4A, and the large scaffold protein eIF4G, which has a consensus binding site YXXXXL for eIF4E, and additional sites for eIF3 and the poly(A)-binding protein. eIF3 recruits the small ribosomal subunit, whereas the eIF4E-eIF4G-poly(A)-binding protein relay results in the so-called "closed loop" model, responsible for the synergistic enhancement of translation by capped and polyadenylated mRNAs. A hallmark of translational control mechanisms is the role of mRNA-binding proteins, which recognize specific (and usually) 3Ј-UTR 2 cis-elements and influence the recruitment of the small ribosomal subunit to the 5Ј cap (reviewed in Refs. 1-3). Probably, the best studied mRNA-binding protein is CPEB1 (cytoplasmic polyadenylation-binding protein 1), characterized in flies, worms, clams, Aplysia, Xenopus, and mammals, which in its conserved C terminus contains two tandem RNA reco...
EWS-FLI1 is a chromosome translocation-derived chimeric transcription factor that has a central and ratelimiting role in the pathogenesis of Ewing's sarcoma. Although the EWS-FLI1 transcriptomic signature has been extensively characterized on the mRNA level, information on its impact on non-coding RNA expression is lacking. We have performed a genome-wide analysis of microRNAs affected by RNAi-mediated silencing of EWS-FLI1 in Ewing's sarcoma cell lines, and differentially expressed between primary Ewing's sarcoma and mesenchymal progenitor cells. Here, we report on the identification of hsa-mir-145 as the top EWS-FLI1-repressed microRNA. Upon knockdown of EWS-FLI1, hsa-mir-145 expression dramatically increases in all Ewing's sarcoma cell lines tested. Vice versa, ectopic expression of the microRNA in Ewing's sarcoma cell lines strongly reduced EWS-FLI1 protein, whereas transfection of an anti-mir to hsa-mir-145 increased the EWS-FLI1 levels. Reporter gene assays revealed that this modulation of EWS-FLI1 protein was mediated by the microRNA targeting the FLI1 3 0 -untranslated region. Mutual regulations of EWS-FLI1 and hsa-mir-145 were mirrored by an inverse correlation between their expression levels in four of the Ewing's sarcoma cell lines tested. Consistent with the role of EWS-FLI1 in Ewing's sarcoma growth regulation, forced hsa-mir-145 expression halted Ewing's sarcoma cell line growth. These results identify feedback regulation between EWS-FLI1 and hsa-mir-145 as an important component of the EWS-FLI1-mediated Ewing's sarcomagenesis that may open a new avenue to future microRNA-mediated therapy of this devastating malignant disease.
SummaryChronic lymphocytic leukaemia (CLL) cells express constitutively activated NOTCH2 in a protein kinase C (PKC)-dependent manner. The transcriptional activity of NOTCH2 correlates not only with the expression of its target gene FCER2 (CD23) but is also functionally linked with CLL cell viability. In the majority of CLL cases, DNA-bound NOTCH2 complexes are less sensitive to the c-secretase inhibitor (GSI) DAPT. Therefore, we searched for compounds that interfere with NOTCH2 signalling at the transcription factor level. Using electrophoretic mobility shift assays (EMSA), we identified the Aspergillum-derived secondary metabolite gliotoxin as a potent NOTCH2 transactivation inhibitor. Gliotoxin completely blocked the formation of DNA-bound NOTCH2 complexes in CLL cells independent of their sensitivity to DAPT. The inhibition of NOTCH2 signalling by gliotoxin was associated with down regulation of CD23 (FCER) expression and induction of apoptosis. Short time exposure of CLL cells indicated that the early apoptotic effect of gliotoxin is independent of proteasome regulated nuclear factor jB activity, and is associated with up regulation of NOTCH3 and NR4A1 expression. Gliotoxin could overcome the supportive effect of primary bone marrow stromal cells in an ex vivo CLL microenvironment model. In conclusion, we identified gliotoxin as a potent NOTCH2 inhibitor with a promising therapeutic potential in CLL.
EVAR of IAA is feasible, excludes the aneurysm effectively, and reduces PAF and renal impairment in most patients with very low periprocedural and midterm mortality and an acceptable reintervention rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.