The COVID-19 pandemic has highlighted the need for a proper risk assessment of respiratory pathogens in indoor settings. This paper documents the COVID Airborne Risk Assessment methodology, to assess the potential exposure of airborne SARS-CoV-2 viruses, with an emphasis on virological and immunological factors in the quantification of the risk. The model results from a multidisciplinary approach linking physical, mechanical and biological domains, enabling decision makers or facility managers to assess their indoor setting. The model was benchmarked against clinical data, as well as two real-life outbreaks, showing good agreement. A probability of infection is computed in several everyday-life settings and with various mitigation measures. The importance of super-emitters in airborne transmission is confirmed: 20% of infected hosts can emit approximately two orders of magnitude more viral-containing particles. The use of masks provides a fivefold reduction in viral emissions. Natural ventilation strategies are very effective to decrease the concentration of virions, although periodic venting strategies are not ideal in certain settings. Although vaccination is an effective measure against hospitalization, their effectiveness against transmission is not optimal, hence non-pharmaceutical interventions (ventilation, masks) should be actively supported. We also propose a critical threshold to define an acceptable risk level.
BackgroundIndoor aerosol transmission of SARS-CoV-2 has been widely recognized, especially in schools where children remain in close proximity and largely unvaccinated. Measures such as strategic natural ventilation and high efficiency particulate air (HEPA) filtration remain poorly implemented and mask mandates are often progressively lifted as vaccination rollout is enhanced.MethodsWe adapted a previously developed aerosol transmission model to study the effect of interventions (natural ventilation, face masks, HEPA filtration, and their combinations) on the concentration of virus particles in a classroom of 160 m3 containing one infectious individual. The cumulative dose of viruses absorbed by exposed occupants was calculated.ResultsThe most effective single intervention was natural ventilation through the full opening of six windows all day during the winter (14-fold decrease in cumulative dose), followed by the universal use of surgical face masks (8-fold decrease). In the spring/summer, natural ventilation was only effective (≥ 2-fold decrease) when windows were fully open all day. In the winter, partly opening two windows all day or fully opening six windows at the end of each class was effective as well (≥ 2-fold decrease). Opening windows during yard and lunch breaks only had minimal effect (≤ 1.2-fold decrease). One HEPA filter was as effective as two windows partly open all day during the winter (2.5-fold decrease) while two filters were more effective (4-fold decrease). Combined interventions (i.e., natural ventilation, masks, and HEPA filtration) were the most effective (≥ 30-fold decrease). Combined interventions remained highly effective in the presence of a super-spreader.ConclusionsNatural ventilation, face masks, and HEPA filtration are effective interventions to reduce SARS-CoV-2 aerosol transmission. These measures should be combined and complemented by additional interventions (e.g., physical distancing, hygiene, testing, contact tracing, and vaccination) to maximize benefit.
The global crisis triggered by the COVID-19 pandemic has highlighted the need for a proper risk assessment of respiratory pathogens in indoor settings. This paper documents the COVID Airborne Risk Assessment (CARA) methodology, to assess the potential exposure of airborne SARS-CoV-2 viruses, with an emphasis on the effect of certain virological and immunological factors in the quantification of the risk. The proposed model is the result of a multidisciplinary approach linking physical, mechanical and biological domains, benchmarked with clinical and experimental data, enabling decision makers or facility managers to perform risk assessments against airborne transmission. The model was tested against two benchmark outbreaks, showing good agreement. The tool was also applied to several everyday-life settings, in particular for the cases of a shared office, classroom and ski cabin. We found that 20% of infected hosts can emit approximately 2 orders of magnitude more viral-containing particles, suggesting the importance of super-emitters in airborne transmission. The use of surgical-type masks provides a 5-fold reduction in viral emissions. Natural ventilation through the opening of windows at all times are effective strategies to decrease the concentration of virions and slightly opening a window in the winter has approximately the same effect as a full window opening during the summer. Although vaccination is an effective protection measure, non-pharmaceutical interventions, which significantly reduce the viral density in the air (ventilation, masks), should be actively supported and included early in the risk assessment process. We propose a critical threshold value approach which could be used to define an acceptable risk level in a given indoor setting.
BACKGROUND: Indoor aerosol transmission of SARS-CoV-2 has been widely recognised, especially in schools where children remain in closed indoor spaces and largely unvaccinated. Measures such as strategic natural ventilation and high efficiency particulate air (HEPA) filtration remain poorly implemented and mask mandates are often progressively lifted as vaccination rollout is enhanced. METHODS: We adapted a previously developed aerosol transmission model to study the effect of interventions (natural ventilation, face masks, HEPA filtration and their combinations) on the concentration of virus particles in a classroom of 160 m3 containing one infectious individual. The cumulative dose of viruses absorbed by exposed occupants was calculated. RESULTS: In the absence of interventions, the cumulative dose absorbed was 1.5 times higher in winter than in spring/summer, increasing chances of indoor airborne transmission in winter. However, natural ventilation was more effective in winter, leading to up to a 20-fold decrease in cumulative dose when six windows were fully open at all times. In winter, partly opening two windows all day or fully opening six windows at the end of each class was effective as well (2.7- to 3-fold decrease). In summer, good ventilation levels could be achieved through the opening of windows all day long (2- to 7-fold decrease depending on the number of windows open). Opening windows only during yard and lunch breaks had minimal effect (≤1.5-fold decrease). One HEPA filter was as effective as two windows partly open all day in winter (3-fold decrease) whereas two filters were more effective (5-fold decrease). Surgical face masks were very effective independently of the season (8-fold decrease). Combined interventions (i.e., natural ventilation, masks, and HEPA filtration) were the most effective (≥25-fold decrease) and remained highly effective in the presence of a super-spreader. INTERPRETATION: Natural ventilation, face masks, and HEPA filtration are effective interventions to reduce SARS-CoV-2 aerosol transmission. These measures should be combined and complemented by additional interventions (e.g., physical distancing, hygiene, testing, contact tracing and vaccination) to maximise benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.