Standard quadrotor unmanned aerial vehicles (UAVs) possess a limited mobility because of their inherent underactuation, that is, availability of four independent control inputs (the four propeller spinning velocities) versus the 6 degrees of freedom parameterizing the quadrotor position/orientation in space. Thus, the quadrotor pose cannot track arbitrary trajectories in space (e.g., it can hover on the spot only when horizontal). Because UAVs are more and more employed as service robots for interaction with the environment, this loss of mobility due to their underactuation can constitute a limiting factor. In this paper, we present a novel design for a quadrotor UAV with tilting propellers which is able to overcome these limitations. Indeed, the additional set of four control inputs actuating the propeller tilting angles is shown to yield full actuation to the quadrotor position/orientation in space, thus allowing it to behave as a fully actuated flying vehicle. We then develop a comprehensive modeling and control framework for the proposed quadrotor, and subsequently illustrate the hardware and software specifications of an experimental prototype. Finally, the results of several simulations and real experiments are reported to illustrate the capabilities of the proposed novel UAV design
Abstract-Standard quadrotor UAVs possess a limited mobility because of their inherent underactuation, i.e., availability of 4 independent control inputs (the 4 propeller spinning velocities) vs. the 6 dofs parameterizing the quadrotor position/orientation in space. As a consequence, the quadrotor pose cannot track an arbitrary trajectory over time (e.g., it can hover on the spot only when horizontal). In this paper, we propose a novel actuation concept in which the quadrotor propellers are allowed to tilt about their axes w.r.t. the main quadrotor body. This introduces an additional set of 4 control inputs which provides full actuation to the quadrotor position/orientation. After deriving the dynamical model of the proposed quadrotor, we formally discuss its controllability properties and propose a nonlinear trajectory tracking controller based on dynamic feedback linearization techniques. The soundness of our approach is validated by means of simulation results.
We present FAST-Hex, a novel UAV concept which is able to smoothly change its configuration from underactuated to fully actuated by using only one additional motor that tilts all propellers at the same time. FAST-Hex can adapt to the task at hand by finely tuning its configuration from the efficient (but underactuated) flight (typical of coplanar multirotor platforms) to the full-pose-tracking (but less efficient) flight, which is attainable by non-coplanar multi-rotors. We also introduce a novel full-pose geometric controller for generic multi-rotors (not only the FAST-Hex) that outperforms classical inverse dynamics approaches. The controller receives as input any reference pose in R 3 ×SO(3) (3D position + 3D orientation). Exact tracking is achieved if the reference pose is feasible with respect to the propeller spinning rate saturations. In case of unfeasibility a new feasible desired trajectory is generated online giving priority to the positional part. The new controller is tested with the FAST-Hex but can be used for many other multi-rotor platforms: underactuated, slightly fully-actuated and completely fully-actuated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.