Attosecond science is based on steering electrons with the electric field of well controlled femtosecond laser pulses. It has led to the generation of extreme-ultraviolet pulses with a duration of less than 100 attoseconds (ref. 3; 1 as = 10(-18) s), to the measurement of intramolecular dynamics (by diffraction of an electron taken from the molecule under scrutiny) and to ultrafast electron holography. All these effects have been observed with atoms or molecules in the gas phase. Electrons liberated from solids by few-cycle laser pulses are also predicted to show a strong light-phase sensitivity, but only very small effects have been observed. Here we report that the spectra of electrons undergoing photoemission from a nanometre-scale tungsten tip show a dependence on the carrier-envelope phase of the laser, with a current modulation of up to 100 per cent. Depending on the carrier-envelope phase, electrons are emitted either from a single sub-500-attosecond interval of the 6-femtosecond laser pulse, or from two such intervals; the latter case leads to spectral interference. We also show that coherent elastic re-scattering of liberated electrons takes place at the metal surface. Owing to field enhancement at the tip, a simple laser oscillator reaches the peak electric field strengths required for attosecond experiments at 100-megahertz repetition rates, rendering complex amplified laser systems dispensable. Practically, this work represents a simple, extremely sensitive carrier-envelope phase sensor, which could be shrunk in volume to about one cubic centimetre. Our results indicate that the attosecond techniques developed with (and for) atoms and molecules can also be used with solids. In particular, we foresee subfemtosecond, subnanometre probing of collective electron dynamics (such as plasmon polaritons) in solid-state systems ranging in scale from mesoscopic solids to clusters and to single protruding atoms.
We present energy-resolved measurements of electron emission from sharp metal tips driven with low energy pulses from a few-cycle laser oscillator. We observe above-threshold photoemission with a photon order of up to 9. At a laser intensity of ∼ 2 × 10(11) W/cm2 the suppression of the lowest order peak occurs, indicating the onset of strong-field effects. We also observe peak shifting linearly with intensity, with a slope of around -1.0 eV/(10(12) W/cm2). We attribute the magnitude of the laser field effects to field enhancement taking place at the tip's surface.
Nanometre-scale metal tips irradiated by femtosecond laser pulses represent ultrafast electron sources. The combination of the laser pulse and the tip offers the possibility of extending attosecond science from atomic or molecular gases to surfaces of solid nanoemitters. We first review this emerging research field focusing on electron rescattering at sharp metal tips. In particular, we investigate the carrier–envelope phase effects that reveal attosecond emission dynamics. Furthermore, we present detailed theory models that support this interpretation.
We present a method which delivers a continuous, high-density beam of slow and internally cold polar molecules. In our source, warm molecules are first cooled by collisions with a cryogenic helium buffer gas. Cold molecules are then extracted by means of an electrostatic quadrupole guide. For ND3 the source produces fluxes up to (7± 7 4 ) × 10 10 molecules/s with peak densities up to (1.0± 1.0 0.6 ) × 10 9 molecules/cm 3 . For H2CO the population of rovibrational states is monitored by depletion spectroscopy, resulting in single-state populations up to (82 ± 10)%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.