Metal-catalyzed enantioselective conjugate additions are highly reliable methods for stereoselective synthesis, however multi-component reactions that are initiated by conjugate arylation of acyclic p-systems are rare. These processes generally proceed with poor diastereoselectivity while requiring basic, moisture sensitive organometallic nucleophiles. Here we show that Rh-catalysts supported by a tetrafluorobenzobarrelene ligand (Ph-tfb) enable the enantio-, diastereo-, and Z-selective a,d-difunctionalization of electron-deficient 1,3-dienes with organoboronic acid nucleophiles and aldehyde electrophiles to generate Z-homoallylic alcohols with three stereocenters. The reaction accommodates diene substrates activated by ester, amide, ketone, or aromatic groups and can be used to couple aryl, alkenyl, or alkyl aldehydes. Diastereoselective functionalization of the Z-olefin unit in the addition products allow for the generation of compounds with five stereocenters in high dr and ee. Mechanistic studies suggest aldehyde allylrhodation is the rate determining step, and unlike reactions of analogous Rh-enolates, the Rh-allyl species generated by d-arylation undergoes aldehyde trapping rather than protonolysis, even when water is present as a co-solvent. These findings should have broader implications in the use of privileged metal-catalyzed conjugate addition reactions as entry points towards the preparation of acyclic molecules containing non-adjacent stereocenters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.