Lithium-ion batteries (LiBs) are widely used as energy storage systems (ESSs). The biggest challenge they face is retaining intrinsic health under all conditions, and understanding internal thermal behaviour is crucial to this. The key concern is the potentially large temperature differences at high charge/discharge rates. Excess heat created during charge/discharge will accelerate irreversible aging, eventually leading to failure. As a consequence, it is important to keep battery states within their safe operating range, which is determined by voltage, temperature, and current windows. Due to the chemically aggressive and electrically noisy environment, internal temperature measurement is difficult. As a result, non-invasive sensors must be physically stable, electromagnetic interference-resistant, and chemically inert. These characteristics are provided by fibre Bragg grating (FBG) sensors, which are also multiplexable. This review article discusses the thermal problems that arise during LiB use, as well as their significance in terms of LiB durability and protection. FBG-based sensors are described as a technology, with emphasis on their importance for direct temperature measurement within the LiB cell.
The temperature of the lithium-ion battery is a crucial measurement during usage for better operation, safety and health of the battery. In-situ monitoring of the internal temperature of the cells is an important input for temperature control of battery management systems and various other related measurements of the battery, such as state-of-charge and state-of-health. Currently, most commercial battery management systems rely on the surface temperature measurements of the cell. However, the internal temperature is comparatively higher than the surface temperature due to heat generation within the cell and lower heat rejection compared to the surface; therefore, accurate internal temperature monitoring methods are essential to improve our knowledge of battery safety and health. This paper reviews the most recent studies of various online internal temperature monitoring techniques under two main themes of hard sensors and soft sensors. The hard sensors include sensors that need to be inserted into the cell and other methods that use contact-less measuring techniques to infer the internal temperature. The soft sensors include estimators/observers that use surface measurements and various models to estimate the internal temperature. More focus is given to the soft sensors due to the lack of an existing, in-depth review of these. These methods are analyzed in detail with their accuracy, implementation, measurement frequency, and the common challenges and benefits are discussed. Further, possible future trends in internal temperature sensing are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.