Habitat fragmentation threatens global biodiversity. To date, there is only limited understanding of how the different aspects of habitat fragmentation (habitat loss, number of fragments and isolation) affect species diversity within complex ecological networks such as food webs. Here, we present a dynamic and spatially explicit food web model which integrates complex food web dynamics at the local scale and species-specific dispersal dynamics at the landscape scale, allowing us to study the interplay of local and spatial processes in metacommunities. We here explore how the number of habitat patches, i.e. the number of fragments, and an increase of habitat isolation affect the species diversity patterns of complex food webs ( α -, β -, γ -diversities). We specifically test whether there is a trophic dependency in the effect of these two factors on species diversity. In our model, habitat isolation is the main driver causing species loss and diversity decline. Our results emphasize that large-bodied consumer species at high trophic positions go extinct faster than smaller species at lower trophic levels, despite being superior dispersers that connect fragmented landscapes better. We attribute the loss of top species to a combined effect of higher biomass loss during dispersal with increasing habitat isolation in general, and the associated energy limitation in highly fragmented landscapes, preventing higher trophic levels to persist. To maintain trophic-complex and species-rich communities calls for effective conservation planning which considers the interdependence of trophic and spatial dynamics as well as the spatial context of a landscape and its energy availability.
Habitat fragmentation is threatening global biodiversity. To date, there is only limited understanding of how the different aspects of habitat fragmentation (habitat loss, number of fragments and isolation) affect species diversity within complex ecological networks such as food webs. Here, we present a dynamic and spatially-explicit food web model which integrates complex food web dynamics at the local scale and species-specific dispersal dynamics at the landscape scale, allowing us to study the interplay of local and spatial processes in metacommunities. We here explore how the number of habitat patches, i.e. the number of fragments, and an increase of habitat isolation, affect the species diversity patterns of complex food webs (α-, β-, γ-diversity). We specifically test whether there is a trophic dependency in the effect of these to factors on species diversity. In our model, habitat isolation is the main driver causing species loss and diversity decline. Our results emphasise that large-bodied consumer species at high trophic positions go extinct faster than smaller species at lower trophic levels, despite being superior dispersers that connect fragmented landscapes better. We attribute the loss of top species to a combined effect of higher biomass loss during dispersal with increasing habitat isolation in general, and the associated energy limitation in highly fragmented landscapes, preventing higher trophic levels to persist. To maintain trophic-complex and species-rich communities calls for effective conservation planning which considers the interdependence of trophic and spatial dynamics as well as the spatial context of a landscape and its energy availability.
While habitat loss is a known key driver of biodiversity decline, the impact of other landscape properties, such as patch isolation, is far less clear. When patch isolation is low, species may benefit from a broader range of foraging opportunities, but are at the same time adversely affected by higher predation pressure from mobile predators. Although previous approaches have successfully linked such effects to biodiversity, their impact on local and metapopulation dynamics has largely been ignored. Since population dynamics may also be affected by environmental disturbances that temporally change the degree of patch isolation, such as periodic changes in habitat availability, accurate assessment of its link with isolation is highly challenging. To analyze the effect of patch isolation on the population dynamics on different spatial scales, we simulate a three-species meta-food chain on complex networks of habitat patches and assess the average variability of local populations and metapopulations, as well as the level of synchronization among patches. To evaluate the impact of periodic environmental disturbances, we contrast simulations of static landscapes with simulations of dynamic landscapes in which 30 percent of the patches periodically become unavailable as habitat. We find that increasing mean patch isolation often leads to more asynchronous population dynamics, depending on the parameterization of the food chain. However, local population variability also increases due to indirect effects of increased dispersal mortality at high mean patch isolation, consequently destabilizing metapopulation dynamics and increasing extinction risk. In dynamic landscapes, periodic changes of patch availability on a timescale much slower than ecological interactions often fully synchronize the dynamics. Further, these changes not only increase the variability of local populations and metapopulations, but also mostly overrule the effects of mean patch isolation. This may explain the often small and inconclusive impact of mean patch isolation in natural ecosystems.
While habitat loss is a known key driver of biodiversity decline, the effect of habitat fragmentation ‘per se’ is far less clear. Environmental perturbations, e.g. due to seasonality, potentially interact with effects of habitat fragmentation, thus making the latter even more difficult to assess. In order to analyze how the dynamic stability of local and metapopulations is affected by habitat fragmentation, we simulate a meta-food chain with three species on complex networks of habitat patches and evaluate the average variability of the local populations and the metapopulations as well as the level of synchronization between the patches. To account for environmental perturbations, we contrast simulations of static landscapes with simulations of dynamic landscapes, where 30 percent of the patches periodically become unavailable as habitats. We find that it depends on the parameterization of the food chain whether higher dispersal rates in less fragmented landscapes synchronize the dynamics or not. Even if the dynamics synchronize, local population variability can decrease due to indirect effects of dispersal mortality, thereby stabilizing metapopulation dynamics and reducing the risk of extinction. In dynamic landscapes, periodic external perturbations often fully synchronize the dynamics even if they act on a much slower time scale than the ecological interactions. Furthermore, they not only increase the variability of local and metapopulations, but also mostly overrule the effects of habitat fragmentation. This may explain why in nature effects of habitat fragmentation are often small and inconclusive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.