Conventional immunosuppressive drugs have been used effectively to prevent immunologic rejection in organ transplantation. Individuals taking these drugs are at risk, however, for the development and recurrence of cancer. In the present study we show that the new immunosuppressive drug rapamycin (RAPA) may reduce the risk of cancer development while simultaneously providing effective immunosuppression. Experimentally, RAPA inhibited metastatic tumor growth and angiogenesis in in vivo mouse models. In addition, normal immunosuppressive doses of RAPA effectively controlled the growth of established tumors. In contrast, the most widely recognized immunosuppressive drug, cyclosporine, promoted tumor growth. From a mechanistic perspective, RAPA showed antiangiogenic activities linked to a decrease in production of vascular endothelial growth factor (VEGF) and to a markedly inhibited response of vascular endothelial cells to stimulation by VEGF. Thus, the use of RAPA, instead of cyclosporine, may reduce the chance of recurrent or de novo cancer in high-risk transplant patients.
Cancer is an increasingly recognized problem associated with immunosuppression. Recent reports, however, suggest that the immunosuppressive agent rapamycin has anti-cancer properties that could address this problem. Thus far, rapamycin's effects on immunity and cancer have been studied separately. Here we tested the effects of rapamycin, versus cyclosporine A (CsA), on established tumors in mice simultaneously bearing a heart allograft. In one tumor-transplant model, BALB/c mice received subcutaneous syngenic CT26 colon adenocarcinoma cells 7 days before C3H ear-heart transplantation. Rapamycin or CsA treatment was initiated with transplantation. In a second model system, a B16 melanoma was established in C57BL/6 mice that received a primary vascularized C3H heart allograft. In vitro angiogenic effects of rapamycin and CsA were tested in an aortic ring assay. Results show that CT26 tumors grew for 2 weeks before tumor complications occurred. However, rapamycin protected allografts, inhibited tumor growth, and permitted animal survival. In contrast, CsA-treated mice succumbed to advancing tumors, albeit with a functioning allograft. Rapamycin's antitumor effect also functioned in severe combined immunodeficient BALB/c mice. Similar effects of the drugs occurred with B16 melanomas and primary vascularized C3H allografts in C57BL/6 mice. Furthermore, in this model, rapamycin inhibited the tumor growth-enhancing effects of CsA. Moreover, in vitro experiments showed that CsA promotes angiogenesis by a transforming growth factor-beta-related mechanism, and that this effect is abrogated by rapamycin. This study demonstrates that rapamycin simultaneously protects allografts from rejection and attacks tumors in a complex transplant-tumor situation. Notably, CsA protects allografts from rejection, but cancer progression is promoted in transplant recipients.
We report two cases of proximal endograft collapse with an almost complete aortic occlusion after endovascular tube-graft treatment of thoracic aortic disease (thoracic aneurysm after a type B dissection, traumatic blunt aortic rupture) using the TAG Gore system. Oversizing of endografts is known to cause this complication. In our two cases, however, the oversizing was between 12% and 21.7%, which is less than the allowed oversizing of 25% that is recommended by the manufacturer. This endograft-related complication might be due to a poor alignment of the currently available endografts in highly angulated and tight aortic arches. In the first case, a combined endovascular and open emergent repair procedure achieved a reopening of the proximal endograft by proximal extension (TAG Gore). In the second case, proximal extension was not considered owing to a precise positioning of the endograft distal to the left carotid artery. A balloon-expanding Palmaz stent was therefore placed interventionally in the proximal part of the TAG graft to expand the endograft and to avoid another collapse of the device. This proximal endograft collapse has to be acknowledged as a potentially hazardous complication. We therefore recommend that the proximal part of thoracic endografts in the aortic arch should be closely monitored and we offer two possible endovascular solutions for resolving the problem of proximal endograft collapse.
The long-term results of this prospective, randomized, single-center study revealed a high incidence of relevant restenosis and neurologic symptoms after CAS. CEA seems to be superior to CAS concerning the development of restenosis and significant prevention of stroke. However, the long-term results of the ongoing multicenter trials have to be awaited for a final conclusion.
Purpose: Despite current chemotherapies, pancreatic cancer remains an uncontrollable, rapidly progressive disease. Here, we tested an approach combining a recently described antiangiogenic drug, rapamycin, with standard gemcitabine cytotoxic therapy on human pancreatic tumor growth.Experimental Design: Tumor growth was assessed in rapamycin and gemcitabine-treated nude mice orthotopically injected with metastatic L3.6pl human pancreatic cancer cells. H&E staining was performed on tumors, along with Ki67 staining for cell proliferation and immunohistochemical terminal deoxynucleotidyl transferase-mediated nick end labeling and CD31 analysis. Rapamycin-treated tumor vessels were also directly examined in dorsal skin-fold chambers for blood flow after thrombosis induction. Cell death in human umbilical vein endothelial cells was assessed by flow cytometry after annexin-V staining.Results: Rapamycin therapy alone inhibited tumor growth and metastasis more than gemcitabine, with remarkable long-term tumor control when the drugs were combined. Mechanistically, H&E analysis revealed tumor vessel endothelium damage and thrombosis with rapamycin treatment. Indeed, dorsal skin-fold chamber analysis of rapamycin-treated tumors showed an increased susceptibility of tumor-specific vessels to thrombosis. Furthermore, terminal deoxynucleotidyl transferase-mediated nick end labeling/ CD31 double staining of orthotopic tumors demonstrated apoptotic endothelial cells with rapamycin treatment, which also occurred with human umbilical vein endothelial cells in vitro. In contrast, gemcitabine was not antiangiogenic and, despite its known cytotoxicity, did not reduce proliferation in orthotopic tumors; nevertheless, rapamycin did reduce tumor proliferation.Conclusions: Our data suggest a novel mechanism whereby rapamycin targets pancreatic tumor endothelium for destruction and thrombosis. We propose that rapamycin-based vascular targeting not only reduces tumor vascularization, it decreases the number of proliferating tumor cells to be destroyed by gemcitabine, thus introducing a new, clinically feasible strategy against pancreatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.