Simulations not only facilitate new and unprecedented insights in highly sophisticated science areas, but also support product design in engineering in terms of improved functionality, cost and time issues. However, as a matter of fact, simulations examine limited excerpts of real systems with accompanying simplifications, abstractions and idealizations. Hence, there is a distinct need to be aware of upcoming risks in simulation outcomes caused by uncertainties. These influence every step of forward-thinking simulation design which is not only restrained by modeling practice but begins with reality perception itself.The intention of the paper is to embed an awareness of uncertainty in the context of simulation by linking major classes of uncertainty with uncertainties within simulations in engineering design. Besides the decisive inclusion of reality as the starting point, mathematic approaches are also used to understand how those uncertainty classes evolve through exponential knowledge creation of systems. The transfer to statistical tolerance analysis shall finally put emphasis on the practical classification of uncertainty, starting from data preparation via concept design and mathematical implementation to result depiction. In the end, the reader's conception of possible uncertainties in special simulation cases shall be sharpened which, vice versa, shall lead to even better and well-thought-out simulation outcomes.
INHALT Die Vergabe von Toleranzen dient der Erfüllung festgelegter Qualitätskriterien, beeinflusst jedoch zugleich wesentlich die Fertigungskosten. Um diesen Konflikt effizient zu lösen, hat sich die Methode der Toleranz-Kosten-Optimierung etabliert. Voraussetzung für eine realitätsnahe Toleranzfestlegung ist die Verfügbarkeit eines geeigneten Kosten- modells. Obgleich aus Literatur und Praxis zahlreiche Ansätze bekannt sind, eignen sich diese nur bedingt für die Serienfertigung. Um diese Lücke zu schließen, wird im Folgenden ein neuer Ansatz zur Ermittlung von Kostenkurven, welche unter anderem prozessfähigkeitsabhängige Messkosten als auch mehrere Prozessparameter berücksichtigt, vorgestellt. Das Beispiel eines Hochdruckeinspritzventils zeigt exemplarisch dessen Anwendung im industriellen Umfeld.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.