The observable reaction rate of heterogeneously catalyzed reactions is known to be limited either by the intrinsic kinetics of the catalytic transformation or by the rate of pore and/or film diffusion. Here, we show that in gas generation reactions from liquid reactants, the nucleation of gas bubbles in the catalyst pore structure represents an additional important rate-limiting step. This is highlighted for the example of catalytic hydrogen release from the liquid organic hydrogen carrier compound perhydro-dibenzyltoluene. A nucleation-inhibited catalytic system produces only dissolved hydrogen with fast saturation of the fluid phase around the active site, while bubble formation enhances mass transfer by more than a factor of 50 in an oscillating reaction regime. Nucleation can be efficiently triggered not only by temperature changes and catalyst surface modification but also by a mechanical stimulus. Our work sheds new light on performance-limiting factors in reactions that are of highest relevance for the future green hydrogen economy.
A geometrically tunable nanoporous system featuring enhanced active surface area by stacking of spheres in cylindrical pores is fabricated. Highly ordered arrays of straight, constricted pores are obtained by anodization of metallic aluminum. Polystyrene (PS) spheres are assembled inside the pores by flowing their suspension through the porous membrane, whereas the construction serves as a filter. After surface functionalization with a noble metal catalyst, these model electrocatalysis systems exhibit functional properties (capacitance in electrochemical impedance spectroscopy) that mirror their geometric parameters. A systematic investigation of the system's geometry as it depends on the surface chemistry of the pores, on the one hand, and the physical parameters of the infiltration procedure, on the other hand, shows that mechanical stacking prevails over surface chemical interactions to determine the stacking density. The highest values of surface area are obtained when PS spheres are put in contact with HfO2 followed by ZnO according to adsorption measurements. Surface derivatization with organic layers does not improve stacking any further. However, choosing the proper concentration of PS spheres and flow rate are crucial for obtaining densely packed sphere assemblies without clogging of the pore entrance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.