This paper addresses the problem of recognizing freeform 3D objects in point clouds. Compared to traditional approaches based on point descriptors, which depend on local information around points, we propose a novel method that creates a global model description based on oriented point pair features and matches that model locally using a fast voting scheme. The global model description consists of all model point pair features and represents a mapping from the point pair feature space to the model, where similar features on the model are grouped together. Such representation allows using much sparser object and scene point clouds, resulting in very fast performance. Recognition is done locally using an efficient voting scheme on a reduced two-dimensional search space.We demonstrate the efficiency of our approach and show its high recognition performance in the case of noise, clutter and partial occlusions. Compared to state of the art approaches we achieve better recognition rates, and demonstrate that with a slight or even no sacrifice of the recognition performance our method is much faster then the current state of the art approaches.
This paper describes an approach for recognizing instances of a 3D object in a single camera image and for determining their 3D poses. A hierarchical model is generated solely based on the geometry information of a 3D CAD model of the object. The approach does not rely on texture or reflectance information of the object's surface, making it useful for a wide range of industrial and robotic applications, e.g., bin-picking. A hierarchical view-based approach that addresses typical problems of previous methods is applied: It handles true perspective, is robust to noise, occlusions, and clutter to an extent that is sufficient for many practical applications, and is invariant to contrast changes. For the generation of this hierarchical model, a new model image generation technique by which scale-space effects can be taken into account is presented. The necessary object views are derived using a similarity-based aspect graph. The high robustness of an exhaustive search is combined with an efficient hierarchical search. The 3D pose is refined by using a least-squares adjustment that minimizes geometric distances in the image, yielding a position accuracy of up to 0.12 percent with respect to the object distance, and an orientation accuracy of up to 0.35 degree in our tests. The recognition time is largely independent of the complexity of the object, but depends mainly on the range of poses within which the object may appear in front of the camera. For efficiency reasons, the approach allows the restriction of the pose range depending on the application. Typical runtimes are in the range of a few hundred ms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.