The localization of a speaker inside a closed environment is often approached by real-time processing of multiple audio signals captured by a set of microphones. One of the leading related methods for sound source localization, the steered-response power (SRP), searches for the point of maximum power over a spatial grid. High-accuracy localization calls for a dense grid and/or many microphones, which tends to impractically increase computational requirements. This paper proposes a new method for sound source localization (called H-SRP), which applies the SRP approach to space regions instead of grid points. This arrangement makes room for the use of a hierarchical search inspired by the branch-and-bound paradigm, which is guaranteed to find the global maximum in anechoic environments and shown experimentally to also work under reverberant conditions. Besides benefiting from the improved robustness of volume-wise search over point-wise search as to reverberation effects, the H-SRP attains high performance with manageable complexity. In particular, an experiment using a 16-microphone array in a typical presentation room yielded localization errors of the order of 7 cm, and for a given fixed complexity, competing methods' errors are two to three times larger.Index Terms-Sound source localization, steered-response power, microphone array, computational complexity, hierarchical search, branch-and-bound.
The demand for data traffic over mobile communication networks has substantially increased during the last decade. As a result, these mobile broadband devices spend the available spectrum fiercely, requiring the search for new technologies. In transmissions where the channel presents a frequencyselective behavior, multicarrier modulation (MCM) schemes have proven to be more efficient, in terms of spectral usage, than conventional modulations and spread spectrum techniques.The orthogonal frequency-division multiplexing (OFDM) is the most popular MCM method, since it not only increases spectral efficiency but also yields simple transceivers. All OFDM-based systems, including the single-carrier with frequency-division equalization (SC-FD), transmit redundancy in order to cope with the problem of interference among symbols. This book presents OFDM-inspired systems that are able to, at most, halve the amount of redundancy used by OFDM systems while keeping the computational complexity comparable. Such systems, herein called memoryless linear time-invariant (LTI) transceivers with reduced redundancy, require low-complexity arithmetical operations and fast algorithms. In addition, whenever the block transmitter and receiver have memory and/or are linear time-varying (LTV), it is possible to reduce the redundancy in the transmission even further, as also discussed in this book. For the transceivers with memory it is possible to eliminate the redundancy at the cost of making the channel equalization more difficult. Moreover, when time-varying block transceivers are also employed, then the amount of redundancy can be as low as a single symbol per block, regardless of the size of the channel memory.With the techniques presented in the book it is possible to address what lies beyond the use of OFDM-related solutions in broadband transmissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.