We analyze the highly non-perturbative regime surrounding the Mott-Hubbard metal-to-insulator transition (MIT) by means of dynamical mean field theory (DMFT) calculations at the two-particle level. By extending the results of Schäfer, et al. [Phys. Rev. Lett. 110, 246405 (2013)] we show the existence of infinitely many lines in the phase diagram of the Hubbard model where the local Bethe-Salpeter equations, and the related irreducible vertex functions, become singular in the charge as well as the particle-particle channel. By comparing our numerical data for the Hubbard model with analytical calculations for exactly solvable systems of increasing complexity [disordered binary mixture (BM), Falicov-Kimball (FK) and atomic limit (AL)], we have (i) identified two different kinds of divergence lines; (ii) classified them in terms of the frequency-structure of the associated singular eigenvectors; (iii) investigated their relation to the emergence of multiple branches in the Luttinger-Ward functional. In this way, we could distinguish the situations where the multiple divergences simply reflect the emergence of an underlying, single energy scale ν * below which perturbation theory is no longer applicable, from those where the breakdown of perturbation theory affects, not trivially, different energy regimes. Finally, we discuss the implications of our results on the theoretical understanding of the non-perturbative physics around the MIT and for future developments of many-body algorithms applicable in this regime.
We employ density functional theory plus dynamical mean field theory and identify the physical origin of why two layers of SrVO3 on a SrTiO3 substrate are insulating: the thin film geometry lifts the orbital degeneracy which in turn triggers a Mott-Hubbard transition. Two layers of SrVO3 are just at the verge of a Mott-Hubbard transition and hence ideally suited for technological applications of the Mott-Hubbard transition: the heterostructure is highly sensitive to strain, electric field, and temperature. A gate voltage can also turn the insulator into a metal, so that a transistor with ideal on-off (metal-insulator) switching properties is realized.
Efficient ab initio calculations of correlated materials at finite temperature require compact representations of the Green's functions both in imaginary time and Matsubara frequency. In this paper, we introduce a general procedure which generates sparse sampling points in time and frequency from compact orthogonal basis representations, such as Chebyshev polynomials and intermediate representation (IR) basis functions. These sampling points accurately resolve the information contained in the Green's function, and efficient transforms between different representations are formulated with minimal loss of information. As a demonstration, we apply the sparse sampling scheme to diagrammatic GW and GF2 calculations of a hydrogen chain, of noble gas atoms and of a silicon crystal.arXiv:1908.07575v1 [cond-mat.str-el]
We describe the hybridization-expansion continuous-time quantum Monte Carlo code package "w2dynamics", developed in Wien and Würzburg. We discuss the main features of this multi-orbital quantum impurity solver for the Anderson impurity model, dynamical mean field theory as well as its coupling to density functional theory. The w2dynamics package allows for calculating one-and two-particle quantities; it includes worm and further novel sampling schemes. Details about its download, installation, functioning and the relevant parameters are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.