This paper proposes a new approach for proving arithmetic correctness of data paths in System-on-Chip modules. It complements existing techniques which are, for reasons of complexity, restricted to verifying only the control behavior. The circuit is modeled at the arithmetic bit level (ABL) so that our approach is well adapted to current industrial design styles for high performance data paths. Normalization at the ABL is combined with the techniques of computer algebra. We compute normal forms with respect to Gröbner bases over rings Z/ 2 n. Our approach proves tractable for industrial data path designs where standard property checking techniques fail.
a b s t r a c tWe present foundational work on standard bases over rings and on Boolean Gröbner bases in the framework of Boolean functions. The research was motivated by our collaboration with electrical engineers and computer scientists on problems arising from formal verification of digital circuits. In fact, algebraic modelling of formal verification problems is developed on the word-level as well as on the bit-level. The word-level model leads to Gröbner basis in the polynomial ring over Z/2 n while the bit-level model leads to Boolean Gröbner bases. In addition to the theoretical foundations of both approaches, the algorithms have been implemented. Using these implementations we show that special data structures and the exploitation of symmetries make Gröbner bases competitive to state-of-the-art tools from formal verification but having the advantage of being systematic and more flexible.
We propose a normalization technique for verifying arithmetic circuits in a bounded model checking environment. Our technique operates on the arithmetic bit level (ABL) description of the arithmetic circuit parts and the property. The ABL description can easily be provided by the front-end of an RTL property checker. The proposed normalization greatly simplifies the SAT instances to be solved for arithmetic circuit verification. Our approach has been applied successfully to verify the integer pipeline of an industrial microprocessor with advanced DSP capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.