Identifying any conformally round metric on the 2-sphere with a unique cross section of the standard lightcone in the $$3+1$$
3
+
1
-Minkowski spacetime, we gain a new perspective on 2d-Ricci flow on topological spheres. It turns out that in this setting, Ricci flow is equivalent to a null mean curvature flow first studied by Roesch–Scheuer along null hypersurfaces. Exploiting this equivalence, we can translate well-known results from 2d-Ricci flow first proven by Hamilton into a full classification of the singularity models for null mean curvature flow in the Minkowski lightcone. Conversely, we obtain a new proof of Hamilton’s classical result using only the maximum principle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.