Hepatitis C virus (HCV) infection is frequentlyHepatitis C virus infection (HCV) is a major problem worldwide, frequently complicated by a virus-associated glomerulonephritis. During the course of infection, immune complexes and viral RNA reach the mesangium.
Chemokines play pivotal roles in the recruitment of inflammatory cells into the kidney. The chemokine receptors CXCR3 and CCR5 are expressed on activated T lymphocytes, and expression of CXCR3 by mesangial cells has been suggested. Detailed description of CXCR3 expression might form a rational basis for use as a diagnostic marker and for therapeutic CXCR3 targeting in human glomerulonephritis. We studied the expression of CXCR3 in renal biopsies by immunohistochemistry (n = 45), and real time RT-PCR (n = 78). Biopsies were from patients with IgA nephropathy, lupus nephritis, and membranoproliferative glomerulonephritis. Furthermore, cultured human mesangial cells (HMC) were studied for CXCR3 expression, and for functional responses to the ligands CXCL10/IP-10 and CXCL9/Mig. CXCR3-positive cells were rarely found in glomerular tufts, but formed a major part of the tubulointerstitial infiltrates. Consistently, CXCR3 mRNA expression was too low to be quantified in glomerular compartments, and was not detectable in HMC. The published staining for CXCR3 of mesangial cells could be traced to cross-reactivity of an antibody for CXCR3 with a potentially related chemokine receptor as revealed by FACS analysis. Despite an absence of CXCR3 expression, mesangial cells reacted to CXCR3 ligands by proliferation and migration, which was blocked by pertussis toxin but not by an anti-CXCR3 antibody. These results indicate that HMC do not express the classical CXCR3, but may potentially express a related receptor with shared ligand specificity. By immunohistochemistry the number of CXCR3-positive cells, mainly interstitial T cells, correlated with renal function, proteinuria, and percentage of globally sclerosed glomeruli. A significant morphological and numerical correlation between CD3, CXCR3, and CCR5-positive cells indicated a CXCR3/CCR5 double-positive T cell population. No apparent difference in the CXCR3 expression pattern was found between disease entities. CXCR3 expression was localized to interstitial T cells, and these cells correlated strongly with important prognostic markers. Therefore interstitial CXCR3, as well as CCR5-positive T cells might play an important role during progressive loss of renal function, and are potential therapeutic targets in human glomerular diseases.
The chemokine CC chemokine ligand (CCL)5/RANTES as well as its respective receptor CCR5 mediate leukocyte infiltration during inflammation and are up-regulated early during the course of glomerulonephritis (GN). We tested the effects of the two CCL5/RANTES blocking analogs, Met-RANTES and amino-oxypentane-RANTES, on the course of horse apoferritin (HAF)-induced GN. HAF-injected control mice had proliferative GN with mesangial immune complex deposits of IgG and HAF. Daily i.p. injections of Met-RANTES or amino-oxypentane-RANTES markedly reduced glomerular cell proliferation and glomerular macrophage infiltration, which is usually associated with less glomerular injury and proteinuria in HAF-GN. Surprisingly, however, HAF-GN mice treated with both analogs showed worse disease with mesangiolysis, capillary obstruction, and nephrotic range albuminuria. These findings were associated with an enhancing effect of the CCL5/RANTES analogs on the macrophage activation state, characterized by a distinct morphology and increased inducible NO synthetase expression in vitro and in vivo, but a reduced uptake of apoptotic cells in vivo. The humoral response and the Th1/Th2 balance in HAF-GN and mesangial cell proliferation in vitro were not affected by the CCL5/RANTES analogs. We conclude that, despite blocking local leukocyte recruitment, chemokine analogs can aggravate some specific disease models, most likely due to interactions with systemic immune reactions, including the removal of apoptotic cells and inducible NO synthetase expression.
The release of chemokines by intrinsic renal cells is an important mechanism for the regulation of leukocyte trafficking during renal inflammation. The expression of chemokine receptors by intrinsic renal cells such as mesangial cells (MC) suggests an expanded role for chemokine-chemokine receptor biology in local immunomodulation and potentially glomerular homeostasis. By immunohistochemistry we found the chemokine receptor CCR7 expressed in a mesangial pattern while the CCR7 ligand SLC/CCL21 showed a podocyte-specific expression. CCR7 expression was further characterized by RT-PCR, RNase protection assays, and FACS analysis of cultured human MC, and was found to be constitutively present. Real-time PCR of microdissected glomeruli confirmed the expression of SLC/CCL21. A functional role for CCR7 was demonstrated for human MC migration and proliferation. A protective effect of SLC/CCL21 was shown for MC survival in Fas Ab-induced apoptosis. Finally, “wound healing” was enhanced in the presence of SLC/CCL21 in an in vitro injury model. The constitutive glomerular expression of CCR7 and its ligand SLC/CCL21 in adjacent cell types of the human kidney suggests novel biological functions of this chemokine/chemokine receptor pair and a potential role in processes involved in glomerular homeostasis and regeneration.
IntroductionElevated serum levels of the proinflammatory cytokine tumor necrosis factor alpha (TNFα) correlate with an increased risk for atherothrombotic events and TNFα is known to induce prothrombotic molecules in endothelial cells. Based on the preexisting evidence for the impact of TNFα in the pathogenesis of autoimmune disorders and their known association with an acquired hypercoagulability, we investigated the effects of TNFα and the role of the TNF receptor subtypes TNFR1 and TNFR2 for arteriolar thrombosis in vivo.MethodsArteriolar thrombosis and platelet-rolling in vivo were investigated in wildtype, TNFR1-/-, TNFR2-/- and TNFR1-/R2-/- C57BL/6 mice using intravital microscopy in the dorsal skinfold chamber microcirculation model. In vitro, expression of prothrombotic molecules was assessed in human endothelial cells by real-time PCR and flow cytometry.ResultsIn wildtype mice, stimulation with TNFα significantly accelerated thrombotic vessel occlusion in vivo upon ferric chloride injury. Arteriolar thrombosis was much more pronounced in TNFR1-/- animals, where TNFα additionally led to increased platelet-endothelium-interaction. TNFα dependent prothrombotic effects were not observed in TNFR2-/- and TNFR1-/R2- mice. In vitro, stimulation of human platelet rich plasma with TNFα did not influence aggregation properties. In human endothelial cells, TNFα induced superoxide production, p-selectin, tissue factor and PAI-1, and suppressed thrombomodulin, resulting in an accelerated endothelial dependent blood clotting in vitro. Additionally, TNFα caused the release of soluble mediators by endothelial cells which induced prothrombotic and suppressed anticoagulant genes comparable to direct TNFα effects.ConclusionsTNFα accelerates thrombus formation in an in vivo model of arteriolar thrombosis. Its prothrombotic effects in vivo require TNFR2 and are partly compensated by TNFR1. In vitro studies indicate endothelial mechanisms to be responsible for prothrombotic TNFα effects. Our results support a more selective therapeutic approach in anticytokine therapy favouring TNFR2 specific antagonists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.