Pasig River is an important river in the Metro Manila, Philippines, since it provides food, livelihood and transport to its residents, and connects two major water bodies; Laguna de Bay and Manila Bay. However, it is now considered to be the toilet bowl of Metro Manila due to the large amount of wastes dumped into the river. Even with the efforts of the government to revive the quality of the Pasig River and its tributaries, it continues to deteriorate over time. This paper provides an overview of the current condition of the Pasig River. The existing water management policies were reviewed, and the issues and challenges hindering the improvement of its water quality identified. Moreover, the water qualities of the rivers in Metro Manila were compared to those of the major rivers in South Korea. The current watershed management system practiced by South Korea has been discussed to serve as a guideline for future recovery of the water quality of the rivers in the Philippines.
Nonpoint source pollution management initiated by the Ministry of Environment (MOE) in Korea resulted to the construction of 25 pilot facilities termed Best Management Practices (BMPs) until 2005. The national nonpoint sources control projects were employed to fulfill the Total Maximum Daily Load programs. The long-term monitoring being conducted at the sites which began in 2006 is providing detailed insight into the performance of the BMPs. The experience and performance data will be used to better understand and implement similar structural BMPs in the future as well as to assist the MOE in developing the design and maintenance guidelines of BMPs. This study presents the results gathered from the monitoring field tests and experiments over 22 rainfall events between the June 2006 and September 2008 period investigating the pollutant removal efficiency of the infiltration trench BMP that is one of the 25 pilot projects of the MOE. In addition, it includes the development of simple linear regression models to estimate constituent event mean concentration. The results reveal high treatment efficiencies for total suspended solids (89%); biochemical oxygen demand, chemical oxygen demand, and dissolved organic carbon (89-93%); oil and grease (100%); cadmium, lead, and zinc (89-93%); total nitrogen (84%); and total phosphorus (82%). The monitoring data and results will represent a step forward to a better prediction of impacts in the environment and to the national development of BMPs for sustainable watershed management in the country.
This study investigated the potential of using bottom ash to be used as an adsorbent for the removal of lead (Pb) from aqueous solutions. The physical and chemical characteristics of bottom ash were determined, with a series of leaching and adsorption experiments performed to evaluate the suitability of bottom ash as an adsorbent material. Trace elements were present, such as silicon and aluminum, indicating that the material had a good adsorption capacity. All heavy metals leached during the Korea standard leaching test (KSLT) passed the regulatory limits for safe disposal, while batch adsorption experiments showed that bottom ash was capable of adsorbing Pb (experimental q e = 0.05 mg/g), wherein the adsorption rate increased with decreasing particle size. The adsorption data were then fitted to kinetic models, including Lagergren first-order and Pseudo-second order, as well as the Elovich equation, and isotherm models, including the Langmuir, Freundlich and Dubinin-Radushkevich isotherms. The results showed that pseudo-second order kinetics was the most suitable model for describing the kinetic adsorption, while the Freundlich isotherm best represented the equilibrium sorption onto bottom ash. The maximum sorption capacity and energy of adsorption of bottom ash were 0.315 mg/g and 7.01 KJ/mol, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.