Background:The SUN domain mediates mechanical linkage across the nuclear envelope. Results: The structure of the SUN2 protein SUN domain was solved. The structure features important for SUN domain function were identified.
Conclusion:The SUN domain forms a homotrimer. The SUN-KASH domain interaction is required for nuclear migration. Significance: The study provides insights into how the SUN protein complex functions.
Prostate cancer remains the most commonly diagnosed malignancy and the second leading cause of cancer-related deaths in men in the United States. The current standard of care consists of prostatectomy and radiation therapy, which may often be supplemented with hormonal therapies. Recurrence is common, and many develop metastatic prostate cancer for which chemotherapy is only moderately effective. It is clear that novel therapies are needed for the treatment of the malignant forms of prostate cancer that recur after initial therapies, such as hormone refractory (HRPC) or castration resistant prostate cancer (CRPC). With advances in understanding of the molecular mechanisms of cancer, we have witnessed unprecedented progress in developing new forms of targeted therapy. Several targeted therapeutic agents have been developed and clinically used for the treatment of solid tumors such as breast cancer, non-small cell lung cancer, and renal cancer. Some of these reagents modulate growth factors and/or their receptors, which are abundant in cancer cells. Other reagents target the downstream signal transduction, survival pathways, and angiogenesis pathways that are abnormally activated in transformed cells or metastatic tumors. We will review current developments in this field, focusing specifically on treatments that can be applied to prostate cancers. Finally we will describe aspects of the future direction of the field with respect to discovering biomarkers to aid in identifying responsive prostate cancer patients.
Recruitment of immune cells to tumor cells targeted by a therapeutic antibody can heighten the antitumor efficacy of the antibody. For example, p185her2/neu-targeting antibodies not only downregulate the p185her2/neu kinase (ERBB2) but also trigger complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) through the antibody Fc region. Here we describe a generalized strategy to improve immune cell recruitment to targeted cancer cells, using a modified scFv antibody we call a “grababody” that binds the target protein and endogenous immunoglobulins. The model system we used to illustrate the utility of this platform recognizes p185her2/neu and includes an IgG binding domain. The recombinant scFv grababody that was created recruited circulating human IgGs and attracted immune cells carrying Fc receptors to tumor cells that expressed p185her2/neu. The presence of the IgG binding domain significantly enhanced CDC and ADCC activity and improved anti-tumor activity in vivo. Our results illustrate a novel general approach to improve antibody-like proteins for therapeutic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.