As exemplified by sorbitol, some common excipients have unexpected effect on bioavailability/bioequivalence, depending on the pharmacokinetic characteristics of the drug, as well as the type and amount of the excipient present in the formulation. More research is warranted to examine other 'common' excipients that may have unintended influence on bioavailability/bioequivalence.
The most commonly used oral antidiabetic drug metformin is a substrate of the hepatic uptake transporter OCT1 (SLC22A1). However, OCT1 deficiency leads to more pronounced reductions of metformin concentrations in mouse than in human liver. Similarly, the effects of OCT1 deficiency on the pharmacokinetics of thiamine were reported to differ between human and mouse. Here, we compared the uptake characteristics of metformin and thiamine between human and mouse OCT1 using stably transfected HEK293 cells. The affinity for metformin was 4.9-fold lower in human than in mouse OCT1, resulting in a 6.5-fold lower intrinsic clearance. Therefore, the estimated liver-to-This article has not been copyedited and formatted. The final version may differ from this version.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.