Here, we report the identification, cloning, and functional characterization of three Caenorhabditis elegans G proteincoupled pigment dispersing factor (PDF) receptors, which we designated as Ce_PDFR-1a, -b, and -c. They represent three splice isoforms of the same gene (C13B9.4), which share a high degree of similarity with the Drosophila PDF receptor and are distantly related to the mammalian vasoactive intestinal peptide receptors (VPAC2) and calcitonin receptors. In a reverse pharmacological screen, three bioactive C. elegans neuropeptides, which were recently identified as the Drosophila PDF orthologues, were able to activate these receptors in a dose-dependent manner with nanomolar potency (isoforms a and b). Integrated green fluorescent protein reporter constructs reveal the expression of these PDF receptors in all body wall muscle cells and many head and tail neurons involved in the integration of environmental stimuli and the control of locomotion. Using a custom data analysis system, we demonstrate the involvement of this newly discovered neuropeptide signaling system in the regulation of locomotor behavior. Overexpression of PDF-2 phenocopies the locomotor defects of a PDF-1 null mutant, suggesting that they elicit opposite effects on locomotion through the identified PDF receptors. Our findings strengthen the hypothesis that the PDF signaling system, which imposes the circadian clock rhythm on behavior in Drosophila, has been functionally conserved throughout the protostomian evolutionary lineage.The neuropeptide pigment dispersing factor (PDF) 3 was initially discovered in crustaceans (as pigment-dispersing hormone), where it drives a daily rhythm of color changes (1). Thereafter, highly conserved PDF peptides were identified in many species of insects and recently also in nematodes (2). 4PDF is a crucial component of the insect circadian clock and has been characterized as a putative output factor, controlling daily rhythms in locomotor activity (3, 4). In 2005, three independent studies identified CG13758, a class B peptide G protein-coupled receptor (GPCR), as the receptor for PDF in Drosophila melanogaster (PDFR) (5-7). It is related to the mammalian VIP receptor (VPAC2) and to the calcitonin receptor, both of which are expressed in the mammalian master clock. Fly PDFR mutants and flies lacking PDF both exhibit severe deficits in free-running locomotor rhythms (4 -6). Recently, 3 endogenous PDF-like neuropeptides were discovered in the free-living nematode model organism C. elegans.4 They are expressed mainly in neurons involved in chemosensation, mechanosensation, oxygen sensing, and locomotion. Circadian analysis revealed that at least two of these peptides (e.g. PDF-1a and -b) are involved in the control of daily locomotor rhythms in C. elegans.4 Mutants lacking PDF-1 mimic the behavioral phenotype of Drosophila PDF mutants with respect to free-running locomotor rhythms. This led us to the hypothesis that the PDF signaling system, which imposes the clock rhythm on behavior, may be functionally...
In mammals, hypothalamic gonadotropin-releasing hormone (GnRH) is a neuropeptide that stimulates the release of gonadotropins from the anterior pituitary. The existence of a putative functional equivalent of this reproduction axis in protostomian invertebrates has been a matter of debate. In this study, the ligand for the GnRH receptor in the nematode Caenorhabditis elegans (Ce-GnRHR) was found using a bioinformatics approach. The peptide and its precursor are reminiscent of both insect adipokinetic hormones and GnRH-preprohormone precursors from tunicates and higher vertebrates. We cloned the AKH-GnRH-like preprohormone and the Ce-GnRHR and expressed the GPCR in HEK293T cells. The GnRHR was activated by the C. elegans AKH-GnRH-like peptide (EC50 ؍ 150 nM) and by Drosophila AKH and other nematode AKH-GnRHs that we found in EST databases. Analogous to both insect AKH receptor and vertebrate GnRH receptor signaling, Ce-AKH-GnRH activated its receptor through a G␣q protein with Ca 2؉ as a second messenger. Gene silencing of Ce-GnRHR, Ce-AKHGnRH, or both resulted in a delay in the egg-laying process, comparable to a delay in puberty in mammals lacking a normal dose of GnRH peptide or with a mutated GnRH precursor or receptor gene. The present data support the view that the AKH-GnRH signaling system probably arose very early in metazoan evolution and that its role in reproduction might have been developed before the divergence of protostomians and deuterostomians.C. elegans ͉ G protein-coupled receptor ͉ molecular evolution ͉ neuropeptide ͉ neuroendocrinology
Members of the cholecystokinin (CCK)/gastrin family of peptides, including the arthropod sulfakinins, and their cognate receptors, play an important role in the regulation of feeding behavior and energy homeostasis. Despite many efforts after the discovery of CCK/gastrin immunoreactivity in nematodes 23 yr ago, the identity of these nematode CCK/gastrin-related peptides has remained a mystery ever since. The Caenorhabditis elegans genome contains two genes with high identity to the mammalian CCK receptors and their invertebrate counterparts, the sulfakinin receptors. By using the potential C. elegans CCK receptors as a fishing hook, we have isolated and identified two CCK-like neuropeptides encoded by neuropeptide-like protein-12 (nlp-12) as the endogenous ligands of these receptors. The neuropeptide-like protein-12 peptides have a very limited neuronal expression pattern, seem to occur in vivo in the unsulfated form, and react specifically with a human CCK-8 antibody. Both receptors and ligands share a high degree of structural similarity with their vertebrate and arthropod counterparts, and also display similar biological activities with respect to digestive enzyme secretion and fat storage. Our data indicate that the gastrin-CCK signaling system was already well established before the divergence of protostomes and deuterostomes.
1TJ, SJH and EM contributed equally to this work.Abbreviations used: LD, light-dark; GFP, green fluorescent protein; NLP, neuropeptide-like proteins; PDF, pigment dispersing factor; PDH, pigment-dispersing hormones; TBS, Tris-buffered saline; TFA, trifluoracetic acid; VIP, vasoactive intestinal peptide. AbstractThe neuropeptides pigment dispersing factor (PDF) and vasoactive intestinal peptide (VIP) are known as key players in the circadian clock system of insects and mammals, respectively. In this study, we report the discovery and characterization of a widely conserved PDF-like neuropeptide precursor pathway in nematodes. Using a combinatorial approach of biochemistry and peptidomics, we have biochemically isolated, identified and characterized three PDF-like neuropeptides in the free-living nematode Caenorhabditis elegans. The two PDF encoding genes, which were designated pdf-1 and pdf-2, display a very strong conservation within the phylum of nematodes. Many of the PDF expressing cells in C. elegans play a role in the control of locomotion and the integration of environmental stimuli, among which light. Our real-time PCR analysis indicates that both PDF genes are consistently expressed during the day and do not affect each other's expression. The transcription of both PDF genes seems to be regulated by atf-2 and ces-2, which encode bZIP transcription factors homologous to Drosophila vrille and par domain protein 1 (Pdp1e), respectively. Together, our data suggest that the PDF neuropeptide pathway, which seems to be conserved throughout the protostomian evolutionary lineage, might be more complex than previously assumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.