Currently, coniferous shoots are almost absent as a food ingredient despite their wide availability in many parts of the world. The aim of the study was to assess and compare the composition of selected plant metabolites, evaluate the antioxidant and antimicrobial properties of selected shoots collected in 2019 from the arboretum in Zielonka (Poland), including individual samples from Picea abies L. (PA), Larix decidua Mill (LD), Pinus sylvestris L. (PS), Pseudotsuga menziesii (PM) and Juniperus communis L. (JC). The present work has shown that aqueous extracts obtained from tested shoots are a rich source of phenols such as caffeic acid, ferulic acid, chlorogenic acid, 4-hydroxybenzoic acid and many others. Obtained extracts exhibit antioxidant and antimicrobial properties in vitro. The highest sum of the studied phenolic compounds was found in the PA sample (13,947.80 µg/g dw), while the lowest in PS (6123.57 µg/g dw). The samples were particularly rich in ferulic acid, chlorogenic acid and 4-hydroxybenzoic acid. The highest values regarding the Folin-Ciocâlteu reagent (FCR) and ferric reducing ability of plasma (FRAP) reducing ability tests, as well as the total flavonoid content assay, were obtained for the LD sample, although the LD (14.83 mg GAE/g dw) and PM (14.53 mg GAE/g dw) samples did not differ statistically in the FCR assay. With respect to free radical quenching measurements (DPPH), the PA (404.18-μM Trolox/g dw) and JC (384.30-μM Trolox/g dw) samples had the highest radical quenching ability and did not differ statistically. Generally, extracts obtained from PA and PS showed the highest antimicrobial activity against tested Gram-negative bacteria, Gram-positive bacteria and fungi.
Scots pine is one of the most widely occurring pines, but future projections suggest a large reduction in its range, mostly at the southern European limits. A significant part of its range is located in the Caucasus, a global hot-spot of diversity. Pine forests are an important reservoir of biodiversity and endemism in this region. We explored demographic and biogeographical processes that shaped the genetic diversity of Scots pine in the Caucasus ecoregion and its probable future distribution under different climate scenarios. We found that the high genetic variability of the Caucasian populations mirrors a complex glacial and postglacial history that had a unique evolutionary trajectory compared to the main range in Europe. Scots pine currently grows under a broad spectrum of climatic conditions in the Caucasus, which implies high adaptive potential in the past. However, the current genetic resources of Scots pine are under high pressure from climate change. From our predictions, over 90% of the current distribution of Scots pine may be lost in this century. By threatening the stability of the forest ecosystems, this would dramatically affect the biodiversity of the Caucasus hot-spot.
In 2017, a 560-ha area of hybrid poplar plantation in northern Poland showed symptoms of tree decline. The leaves appeared smaller, yellow-brown, and were shed prematurely. Twigs and smaller branches died without distinct cankers. Trunks decayed from the base. The phloem and xylem showed brown necrosis. Ten percent of the trees died 1–2 months after the first appearance of the symptoms. None of these symptoms were typical for known poplar diseases. The trees’ mycobiota were analysed using Illumina sequencing. A total of 69 467 and 70 218 operational taxonomic units (OTUs) were obtained from the soil and wood. Blastocladiomycota and Chytridiomycota occurred only in the soil, with very low frequencies (0.005% and 0.008%). Two taxa of Glomeromycota, with frequencies of 0.001%, occurred in the wood. In the soil and wood, the frequencies of Zygomycota were 3.631% and 0.006%, the frequencies of Ascomycota were 45.299% and 68.697%, and the frequencies of Basidiomycota were 4.119% and 2.076%. At least 400 taxa of fungi were present. The identifiable Zygomycota, Ascomycota, and Basidiomycota were represented by at least 18, 263 and 81 taxa, respectively. Many fungi were common to the soil and wood, but 160 taxa occurred only in soil and 73 occurred only in wood. The root pathogens included species of Oomycota. The vascular and parenchymal pathogens included species of Ascomycota and of Basidiomycota. The initial endophytic character of the fungi is emphasized. Soil, and possibly planting material, may be the sources of the pathogen inoculum, and climate warming is likely to be a predisposing factor. A water deficit may increase the trees’ susceptibility. The epidemiology of poplar vascular wilt reminds grapevine trunk diseases (GTD), including esca, black foot disease and Petri disease.
So far, there have been no studies on fungal communities in Prunus serotina (black cherry) wood. Our objectives were to characterize fungal communities from P. serotina wood and to evaluate effects of glyphosate (Glifocyd 360 SL) used on P. serotina stumps on abundance, species richness and diversity of those communities. In August 2016, in the Podanin Forest District, stumps of black cherry trees left after felling were treated with the herbicide. Control stumps were treated with water. Wood discs were cut from the surface of the stumps in May and July–August 2017. Eight treatment combinations (2 herbicide treatments × 2 disc sizes × 2 sample times) were tested. Sub-samples were pooled and ground in an acryogenic mill. Environmental DNA was extracted with a Plant Genomic DNA Purification Kit. The ITS1, 5.8S rDNA region was used to identify fungal species, using primers ITS1FI2 5′-GAACCWGCGGARGGATCA-3′ and 5.8S 5′-CGCTGCGTT CTTCATCG-3′. The amplicons were sequenced using the Illumina system. The results were subjected to bioinformatic analysis. Sequences were compared with reference sequences from the NCBI database using the BLASTn 2.8.0 algorithm. Abundance of fungi was defined as the number of Operational Taxonomic Units (OTUs), and diversity as the number of species in a sample. Differences between the number of OTUs and taxa were analyzed using the chi-squared test (χ2). Diversity in microbial communities was compared using diversity indices. A total of 54,644 OTUs were obtained. Culturable fungi produced 49,808 OTUs (91.15%), fungi not known from culture had 2571 OTUs (4.70%), non-fungal organisms had 1333 (2.44%) and organisms with no reference sequence in NCBI, 934 OTUs (1.71%). The total number of taxa ranged from 120 to 319. Fungi in stump wood were significantly more abundant in July–August than in May, in stumps >5 cm diameter than in stumps <5 cm diameter, in glyphosate-treated than in untreated stumps when sampled in May, and in untreated than in glyphosate-treated stumps when sampled in July–August. Species richness was significantly greater in July–August than in May, and in stumps >5 cm diameter than in stumps <5 cm diameter, either treated or untreated, depending on size. Herbicides can therefore affect the abundance and diversity of fungal communities in deciduous tree wood. The greater frequency of Ascomycota in herbicide-treated than in untreated stumps indicates their greater tolerance of glyphosate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.