The nature of the NO-bond in the N-oxide group was investigated by means of combined theoretical calculations (including QTAIM and NBO approaches) and statistical analyses of the contents of crystal structure databases. The N-O bond in the N-oxide group should be classified as the NO donating bond with an important contribution of ON back-donation (of the π-electron type, when available). The visualization of the Laplacian of electron density in the region of an oxygen valence sphere suggests the presence of two lone pairs for the imine-N-oxide group (characterized by effective ON back-donation). A detailed bonding analysis performed by means of natural resonance theory indicates that the N→O bond is of an order of magnitude clearly greater than 1. In addition, the stability of the N→O bond in various N-oxides was estimated. The analyses of the hydrogen- and halogen-bonded complexes of the N-oxides reveal strong Lewis basicity of the N-oxide group. The formation of H- and X-bonding leads to N→O bond elongation due to its structural, topological and spectroscopic characteristics. Moreover, in pyridine-N-oxide, the electron-withdrawing -NO2 group additionally stabilizes the N→O bond, whereas the opposite effect can be observed for the electron-donating-NH2 substituent. This is due to a substituent effect on the π-type ON back-donation. As a result, the oxygen atom in pyridine-N-oxide may change its availability during intermolecular interaction formation, as revealed in the interaction energy, which changes by about half of the estimated total interaction energy.
X-ray analysis of N-(4-fluorophenyl)-1,5-dimethyl-1H-imidazole-4-carboxamide 3-oxide reveals the temperature-dependent polymorphism associated with the crystallographic symmetry conversion. The observed crystal structure transformation corresponds to a symmetry reduction from I4 1 /a (I) to P4 3 (II) space groups. The phase transition mainly concerns the subtle but clearly noticeable reorganization of molecules in the crystal space, with the structure of individual molecules left almost unchanged. The Hirshfeld surface analysis shows that various intermolecular contacts play an important role in the crystal packing, revealing graphically the differences in spatial arrangements of the molecules in both polymorphs. The N-oxide oxygen atom acts as a formally negatively charged hydrogen bonding acceptor in intramolecular hydrogen bond of N-H…O -type. The combined crystallographic and theoretical DFT methods demonstrate that the observed intramolecular N-oxide N-H…O hydrogen bond should be classified as a very strong charge-assisted and closed-shell non-covalent interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.