IgA nephropathy (IgAN) is recognized as most frequent form of primary glomerulonephritis worldwide. IgAN is associated with renal degradation occurring due to irreversible pathological changes leading to glomerulosclerosis and interstitial fibrosis. It remains poorly understood whether and to what extent these changes are followed by the activation of regenerative mechanisms. Therefore, in this study we aimed to evaluate regenerative potential of IgAN patients by quantitating the frequencies of several stem cell types, namely circulating very small embryonic-like stem cells (VSELs), hematopoietic stem cells (HSCs), endothelial progenitor cells (EPCs) as well as different monocyte subsets with varying maturation and angiopoietic potential. Moreover, we analyzed whether changes in stem cell and monocyte frequencies were related to alterations of several chemotactic factors (stromal derived-factor (SDF-1), angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2)) and a marker of monocyte/macrophage activation, namely soluble form of CD163 receptor (sCD163). We showed that IgAN patients presented with enhanced levels of VSELs, but not other stem cell types. We also demonstrated significantly elevated numbers of intermediate monocytes known for their M2-like properties as well as high angiopoietic potential and CD163 expression. This finding was accompanied by detection of elevated sCD163 plasma levels in IgAN patients. Taking together, we demonstrated here that IgAN is associated with selective mobilization of VSELs and increased maturation of monocytes towards M2-like and angiopoietic phenotype. These findings contribute to better understanding of the role of regenerative mechanisms in the pathogenesis of chronic inflammation in the course of IgAN.
Mesenchymal stem cells (MSCs) have a great regenerative and immunomodulatory potential that was successfully tested in numerous pre-clinical and clinical studies of various degenerative, hematological and inflammatory disorders. Over the last few decades, substantial immunoregulatory effects of MSC treatment were widely observed in different experimental models of asthma. Therefore, it is tempting to speculate that stem cell-based treatment could become an attractive means to better suppress asthmatic airway inflammation, especially in subjects resistant to currently available anti-inflammatory therapies. In this review, we discuss mechanisms accounting for potent immunosuppressive properties of MSCs and the rationale for their use in asthma. We describe in detail an intriguing interplay between MSCs and other crucial players in the immune system as well as lung microenvironment. Finally, we reveal the potential of MSCs in maintaining airway epithelial integrity and alleviating lung remodeling. Graphical abstract
Lung cancer represents the most common type of human malignancy and is the main cause of cancer-associated mortality worldwide. To improve the effectiveness of treatment strategies, a better understanding of the mechanisms of cancer progression and invasiveness is required. Recently, B-cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL), two relatively newly described cytokines belonging to the tumor necrosis factor superfamily, have been shown to play a role in cancer progression. However, at present, the effects of both cytokines on lung cancer cells remain unclear. The present study aimed therefore to understand the direct effects of BAFF and APRIL on non-small cell lung cancer (NSCLC) progression. To do so, reverse transcription quantitative PCR and western blotting were used to evaluate whether A549 and H2030 NSCLC cells express receptors for both BAFF and APRIL. The results demonstrated that both investigated cell lines expressed BAFF-R (receptor specific to BAFF only) and transmembrane activator and CAML interactor (TACI; shared receptor for both cytokines). In addition, functional experiments were performed to determine the effects of BAFF and APRIL stimulation on cancer cell viability. The results demonstrated no direct effects of BAFF and APRIL on NSCLC cell proliferation and invasiveness. In summary, the present study demonstrated that NSCLC cells possess the ability to respond directly to both BAFF and APRIL. However, activation of BAFF-R and TACI signaling in cancer cells did not increase the proliferative capacity and invasiveness. Further investigation is thus required to better understand the role of BAFF and APRIL on the progression of NSCLC.
Background: The exact role of individual inflammatory factor in heart failure with reduced ejection fraction (HFrEF) remains elusive. The study aimed to evaluate three monocyte subsets (classical-CD14++CD16−, intermediate-CD14++CD16+, and nonclassical-CD14+CD16++) in HFrEF patients and to assess the effect of the cardiac resynchronization therapy (CRT) on the changes in monocyte compartment. Methods: The study included 85 patients with stable HFrEF. Twenty-five of them underwent CRT device implantation with subsequent 6-month assessment. The control group consisted of 23 volunteers without HFrEF. Results: The analysis revealed that frequencies of non-classical-CD14+CD16++ monocytes were lower in HFrEF patients compared to the control group (6.98 IQR: 4.95–8.65 vs. 8.37 IQR: 6.47–9.94; p = 0.021), while CD14++CD16+ and CD14++CD16− did not differ. The analysis effect of CRT on the frequency of analysed monocyte subsets 6 months after CRT device implantation showed a significant increase in CD14+CD16++ (from 7 IQR: 4.5–8.4 to 7.9 IQR: 6.5–9.5; p = 0.042) and CD14++CD16+ (from 5.1 IQR: 3.7–6.5 to 6.8 IQR: 5.4–7.4; p = 0.017) monocytes, while the frequency of steady-state CD14++CD16− monocytes was decreased (from 81.4 IQR: 78–86.2 to 78.2 IQR: 76.1–81.7; p = 0.003). Conclusions: HFrEF patients present altered monocyte composition. CRT-related changes in the monocyte compartment achieve levels observed in controls without HFrEF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.