We have recently proposed a center-periphery organization based on resolution needs, in which objects engaging in recognition processes requiring central-vision (e.g., face-related) are associated with center-biased representations, while objects requiring large-scale feature integration (e.g., buildings) are associated with periphery-biased representations. Here we tested this hypothesis by comparing the center-periphery organization with activations to five object categories: faces, buildings, tools, letter strings, and words. We found that faces, letter strings, and words were mapped preferentially within the center-biased representation. Faces showed a hemispheric lateralization opposite to that of letter strings and words. In contrast, buildings were mapped mainly to the periphery-biased representation, while tools activated both central and peripheral representations. The results are compatible with the notion that center-periphery organization allows the optimal allocation of cortical magnification to the specific requirements of various recognition processes.
The ENIGMA ASD working group provides the largest study of brain morphometry differences in ASD to date, using a well-established, validated, publicly available analysis pipeline. ASD patients showed altered morphometry in the cognitive and affective parts of the striatum, frontal cortex, and temporal cortex. Complex developmental trajectories were observed for the different regions, with a developmental peak around adolescence. These findings suggest an interplay in the abnormal development of the striatal, frontal, and temporal regions in ASD across the lifespan.
The organization of category-selective regions in ventral visual cortex is well characterized in human adults. We investigated a crucial, previously unaddressed, question about how this organization emerges developmentally. We contrasted the developmental trajectories for face-, object-, and place-selective activation in the ventral visual cortex in children, adolescents, and adults. Although children demonstrated adult-like organization in object- and place-related cortex, as a group they failed to show consistent face-selective activation in classical face regions. The lack of a consistent neural signature for faces was attributable to (1) reduced face-selectivity and extent of activation within the regions that will become the FFA, OFA, and STS in adults, and (2) smaller volumes and considerable variability in the locus of face-selective activation in individual children. In contrast, adolescents showed an adult-like pattern of face-selective activation, although it was more right-lateralized. These findings reveal critical age-related differences in the emergence of category-specific functional organization in the visual cortex and support a model of brain development in which specialization emerges from interactions between experience-dependent learning and the maturing brain.
In order to study face recognition in relative isolation from visual processes that may also contribute to object recognition and reading, we investigated CK, a man with normal face recognition but with object agnosia and dyslexia caused by a closed-head injury. We administered recognition tests of up right faces, of family resemblance, of age-transformed faces, of caricatures, of cartoons, of inverted faces, and of face features, of disguised faces, of perceptually degraded faces, of fractured faces, of faces parts, and of faces whose parts were made of objects. We compared CK's performance with that of at least 12 control participants. We found that CK performed as well as controls as long as the face was upright and retained the configurational integrity among the internal facial features, the eyes, nose, and mouth. This held regardless of whether the face was disguised or degraded and whether the face was represented as a photo, a caricature, a cartoon, or a face composed of objects. In the last case, CK perceived the face but, unlike controls, was rarely aware that it was composed of objects. When the face, or just the internal features, were inverted or when the configurational gestalt was broken by fracturing the face or misaligning the top and bottom halves, CK's performance suffered far more than that of controls. We conclude that face recognition normally depends on two systems: (1) a holistic, face-specific system that is dependent on orientationspecific coding of second-order relational features (internal), which is intact in CK and (2) a part-based object-recognition system, which is damaged in CK and which contributes to face recognition when the face stimulus does not satisfy the domain-specific conditions needed to activate the face system.
The parietal lobe forms about 20% of the human cerebral cortex and is divided into two major regions, the somatosensory cortex and the posterior parietal cortex. Posterior parietal cortex, located at the junction of multiple sensory regions, projects to several cortical and subcortical areas and is engaged in a host of cognitive operations. One such operation is selective attention, the process where by the input is filtered and a subset of the information is selected for preferential processing. Recent neuroimaging and neuropsychological studies have provided a more fine-grained understanding of the relationship between brain and behavior in the domain of selective attention. anterior intraparietal sulcus CVA cerebrovascular accident DMS delayed match-to-sample fMRI functional magnetic resonance imaging IPL inferior parietal lobule SPL superior parietal lobule TPJ temporoparietal junction IntroductionParietal cortex, situated at the intersection of visual, auditory, and tactile cortices at the 'crossroads of the brain' [1], is 'association' or tertiary cortex. With its requisite connectivity to cortical and subcortical regions associated with motor responses, parietal cortex serves a crucial role in transforming sensory input into motor output. In the course of doing so, a host of cognitive computations are engaged including spatial representation and updating, attention, coordinate transformation, as well as abstract motor planning [2]. Although much progress has been made in demarcating fine-grained anatomical distinctions in parietal cortex and their functional correlates in nonhuman primates [2,3], this has not been possible in humans. In the past, neuropsychological studies in individuals with lesions have been somewhat helpful in this regard; however, in most cases, the lesions are diffuse, precluding definitive conclusions about the structural and functional aspects of human parietal cortex.With the advent of high-resolution functional neuroimaging, this mapping of anatomical areas is now possible. In addition, the development and accessibility of methods for detailed structural analysis of lesions has enabled a more fine-grained demarcation of the lesion site in braindamaged individuals, and, consequently, a more precise brain-behavior correlation. Here, we review the recent advances that suggest that the role of posterior parietal cortex in selective attention is more specific than was previously assumed. Parietal cortex and attentionSelective attention is the process whereby a subset of the input is selected preferentially for further processing. A primary focus of several recent neuroimaging investigations of attention has been to determine the anatomical locus within the parietal lobe that gives rise to the attentional biasing signal (i.e. the source) that ultimately initiates the sensory enhancement of the selected stimulus (i.e. the effect). The attentional biasing signal could potentially be generated in one of two ways: first, in a bottom-up or stimulus-driven manner (also referred to as 'attent...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.