The pharmacokinetics of afoxolaner in dogs was evaluated following either intravenous or after oral administration of NEXGARD(®), a soft chewable formulation. Afoxolaner is a member of one of the newest classes of antiparasitic agents, known as antiparasitic isoxazolines. The soft chewable formulation underwent rapid dissolution, and afoxolaner was absorbed quickly following oral administration of the minimum effective dose of 2.5mg/kg, with maximum plasma concentrations (Cmax) of 1,655 ± 332 ng/mL observed 2-6h (Tmax) after treatment. The terminal plasma half-life was 15.5 ± 7.8 days, and oral bioavailability was 73.9%. Plasma concentration-versus-time curves fit a 2-compartment model and increased proportionally with dose over the oral dose range of 1.0-4.0mg/kg, and over the oral dose range from 1.0 to 40 mg/kg. Following an intravenous dose of 1mg/kg, the volume of distribution (Vd) was 2.68 ± 0.55 L/kg, and the systemic clearance was 4.95 ± 1.20 mL/h/kg. Afoxolaner plasma protein binding was >99.9% in dogs. One major metabolite, formed following hydroxylation of afoxolaner, was identified in dog plasma, urine and bile. When afoxolaner is administered orally, there is a strong correlation between afoxolaner plasma concentration and efficacy with EC90 values of 23 ng/mL for Ctenocephalides felis and ≥ 100 ng/mL for Rhipicephalus sanguineus sensu lato and Dermacentor variabilis. The pharmacokinetic properties of afoxolaner are suited for a monthly administration product because the fast absorption and long terminal half-life support a rapid onset of action while ensuring month-long efficacy.
Nodulisporic acid A (1) is a structurally complex fungal metabolite that exhibits systemic efficacy against fleas via modulation of an invertebrate specific glutamate-gated ion channel. In order to identify a nodulisporamide suitable for monthly oral dosing in dogs, a library of 335 nodulisporamides was examined in an artificial flea feeding system for intrinsic systemic potency as well as in a mouse/bedbug assay for systemic efficacy and safety. A cohort of 66 nodulisporamides were selected for evaluation in a dog/flea model; pharmacokinetic analysis correlated plasma levels with flea efficacy. These efforts resulted in the identification of the development candidate N-tert-butyl nodulisporamide (3) as a potent and efficacious once monthly oral agent for the control of fleas and ticks on dogs and cats which was directly compared to the topical agents fipronil and imidacloprid, with favorable results obtained. Multidose studies over 3 months confirmed the in vivo ectoparasiticidal efficacy and established that 3 lacked overt mammalian toxicity. Tissue distribution studies in mice using [(14)C]-labeled 3 indicate that adipose beds serve as ligand depots, contributing to the long terminal half-lives of these compounds.
These findings indicate that chronic blockade of Ang II receptors by either site-selective or balanced AT1/AT2 antagonists is insufficient to inhibit intimal hyperplasia after experimental coronary vascular injury in the pig. The results further suggest that, unlike in the rat carotid artery, Ang II is not a major mediator of intimal thickening in the pig coronary artery.
The safety profile of afoxolaner, a new isoxazoline molecule, was evaluated following the regulatory requirements when administered six times orally in a soft chewable formulation at a dose of at least 1×, 3× or 5× the maximum exposure dose (6.3mg/kg) in 8-week-old Beagle dogs. Thirty-two healthy puppies (16 males and 16 females) were enrolled and allocated randomly to one of four treatment groups. Treatments were administered at three, one-month dose intervals (Days 0, 28 and 56) followed by three, 2-week dose intervals (Days 84, 98 and 112). The study ended at Day 126. The groups were: Group 1: non-treated control; Group 2: afoxolaner chews administered at a dosage of at least 6.3mg/kg (1×); Group 3: afoxolaner chews administered at a dosage of at least 18.9 mg/kg (3×); and Group 4: afoxolaner chews administered at a dosage of at least 31.5mg/kg (5×). All dogs were examined for general health twice a day beginning on at least Day-14. Physical examinations, and blood collections for clinical pathology analysis and afoxolaner plasma concentrations, were performed throughout the study. On Day 126, 2 weeks following the last treatment, all dogs were humanely euthanized prior to the conduction of a full necropsy with tissue collection. No afoxolaner-related changes were observed in growth, physical variables, clinical pathology variables, or tissues examined histologically. No clinically or statistically significant health abnormalities related to the administration of afoxolaner were observed. Vomiting and diarrhea were observed sporadically across all groups including the controls. The kinetics of afoxolaner plasma concentrations was linear following 6 doses of 6.3, 18.9 and 31.5mg/kg and dose proportionality was demonstrated. There were no statistical differences (p<0.05) between samples taken on Days 55 and 83 when compared to Day 27. Based upon the results of this study, afoxolaner was shown to be safe when administered repeatedly in a soft chewable formulation at up to 5× the maximum exposure dose in dogs as young as 8 weeks of age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.