Obesity and its associated comorbidities (e.g., diabetes mellitus and hepatic steatosis) contribute to approximately 2.5 million deaths annually1 and are among the most prevalent and challenging conditions confronting the medical profession2,3. Neurotensin (NT), a 13-amino acid peptide predominantly localized in specialized enteroendocrine (EE) cells of the small bowel4 and released by fat ingestion5, facilitates fatty acid (FA) translocation in rat intestine6, and stimulates growth of various cancers7; the effects of NT are mediated through three known NT receptors (NTR1, 2 and 3)8. Increased fasting plasma levels of pro-NT (a stable NT precursor fragment produced in equimolar amounts relative to NT) are associated with increased risk of diabetes, cardiovascular disease and mortality9; however, a role for NT as a causative factor in these diseases is unknown. Here, we show that NT-deficient mice demonstrate significantly reduced intestinal fat absorption and are protected from obesity, hepatic steatosis and insulin resistance associated with high fat consumption. We further demonstrate that NT attenuates the activation of AMP-activated protein kinase (AMPK) and stimulates FA absorption in mice and in cultured intestinal cells, and that this occurs through a mechanism involving NTR1 and NTR3/sortilin. Consistent with the findings in mice, expression of NT in Drosophila midgut EE cells results in increased lipid accumulation in the midgut, fat body, and oenocytes (specialized hepatocyte-like cells) and decreased AMPK activation. Remarkably, in humans, we show that both obese and insulin-resistant subjects have elevated plasma concentrations of pro-NT, and in longitudinal studies among non-obese subjects, high levels of pro-NT denote a doubling of the risk of developing obesity later in life. Our findings directly link NT with increased fat absorption and obesity and suggest that NT may provide a prognostic marker of future obesity and a potential target for prevention and treatment.
Sepsis, a life-threatening systemic inflammatory response syndrome induced by infection, is widely studied using laboratory animal models. While cecal-ligation and puncture (CLP) is considered the gold standard model for sepsis research, it may not be preferable for experiments comparing animals of different size or under different dietary regimens. By comparing cecum size, shape, and cecal content characteristics in mice under different experimental conditions (aging, diabetes, pancreatitis), we show that cecum variability could be problematic for some CLP experiments. The cecal slurry (CS) injection model, in which the cecal contents of a laboratory animal are injected intraperitoneally to other animals, is an alternative method for inducing polymicrobial sepsis; however, the CS must be freshly prepared under conventional protocols, which is a major disadvantage with respect to reproducibility and convenience. The objective of this study was to develop an improved CS preparation protocol that allows for long-term storage of CS with reproducible results. Using our new CS preparation protocol we found that bacterial viability is maintained for at least 6 months when the CS is prepared in 15% glycerol-PBS and stored at -80°C. To test sepsis-inducing efficacy of stored CS stocks, various amounts of CS were injected to young (4–6 months old), middle-aged (12–14 months old), and aged (24–26 months old) male C57BL/6 mice. Dose- and age-dependent mortality was observed with high reproducibility. Circulating bacteria levels strongly correlated with mortality suggesting an infection-mediated death. Further, injection with heat-inactivated CS resulted in acute hypothermia without mortality, indicating that CS-mediated death is not due to endotoxic shock. This new CS preparation protocol results in CS stocks which are durable for freezing preservation without loss of bacterial viability, allowing experiments to be performed more conveniently and with higher reproducibility than before.
Inflammation increases the abundance of inducible nitric oxide synthase (iNOS), leading to enhanced production of nitric oxide (NO), which can modify proteins by S-nitrosylation. Enhanced NO production increases the activities of the transcription factors p53 and nuclear factor κB (NF-κB) in several models of disease-associated inflammation. S-Nitrosylation inhibits the activity of the protein deacetylase SIRT1. SIRT1 limits apoptosis and inflammation by deacetylating p53 and p65 (also known as RelA), a subunit of NF-κB. We showed in multiple cultured mammalian cell lines that NO donors or inflammatory stimuli induced S-nitrosylation of SIRT1 within CXXC motifs, which inhibited SIRT1 by disrupting its ability to bind zinc. Inhibition of SIRT1 reduced deacetylation and promoted activation of p53 and p65, leading to apoptosis and increased expression of proinflammatory genes. In rodent models of systemic inflammation, Parkinson’s disease, or aging-related muscular atrophy, S-nitrosylation of SIRT1 correlated with increased acetylation of p53 and p65 and activation of p53 and NF-κB target genes, suggesting that S-nitrosylation of SIRT1 may represent a proinflammatory switch common to many diseases and aging.
Increased mortality and overexpression of interleukin-6 (IL-6) during inflammatory stress are well-documented age-associated phenomena; however, the site of IL-6 overexpression is not entirely known. Here, we report that white adipose tissue is a major source of IL-6 in aged animals during lipopolysaccharide (LPS)-induced systemic inflammation. Among the various tissues examined, white adipose tissue from the epididymal fat pad (located in the abdominal cavity) expressed the highest level of IL-6 messenger RNA in both young and aged mice with a 5.5-fold higher level in the aged. Immunohistochemistry revealed that, within the adipose tissue, LPS-induced IL-6 expression is localized to both the adipocytes and stromal cells. Compared with age-matched wild-type mice, aged IL-6((-/-)) mice exhibited reduced mortality to LPS suggesting a deleterious effect of IL-6 overexpression in the aged. These results demonstrate that increased vulnerability to systemic inflammation with age is due in part, to augmented IL-6 production by the adipose tissue.
Sepsis is a serious problem among the geriatric population as its incidence and mortality rates dramatically increase with advanced age. Despite a large number of ongoing clinical and basic research studies, there is currently no effective therapeutic strategy that rescues elderly patients with severe sepsis. Recognition of this problem is relatively low as compared to other age-associated diseases. The disparity between clinical and basic studies is a problem, and this is likely due, in part, to the fact that most laboratory animals used for sepsis research are not old while the majority of sepsis cases occur in the geriatric population. The objective of this article is to review recent epidemiological studies and clinical observations, and compare these with findings from basic laboratory studies which have used aged animals in experimental sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.