Alzheimer’s disease is caused by increased production or reduced clearance of amyloid-β, which results in the formation amyloid-β plaques and triggers a cascade of downstream events leading to progressive neurodegeneration. The earliest clinical symptoms of Alzheimer’s disease, i.e., memory loss, are however poorly understood from a molecular and cellular perspective. Here we used APPswe/PS1dE9 (APP/PS1) transgenic mice to study the early pre-pathological effects of increased amyloid-β levels on hippocampal synaptic plasticity and memory. Using an unbiased proteomics approach we show that the early increase in amyloid-β levels in APP/PS1 mice at three months of age coincides with a robust and significant upregulation of several protein components of the extracellular matrix in hippocampal synaptosome preparations. This increase in extracellular matrix levels occurred well before the onset of plaque formation and was paralleled by impairments in hippocampal long-term potentiation and contextual memory. Direct injection into the hippocampus of the extracellular matrix inactivating enzyme chondroitinase ABC restored both long-term potentiation and contextual memory performance. These findings indicate an important role for the extracellular matrix in causing early memory loss in Alzheimer’s disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s40478-014-0076-z) contains supplementary material, which is available to authorized users.
Age-related cognitive decline is a serious health concern in our aging society. Decreased cognitive function observed during healthy brain aging is most likely caused by changes in brain connectivity and synaptic dysfunction in particular brain regions. Here we show that aged C57BL/ 6J wild-type mice have hippocampus-dependent spatial memory impairments. To identify the molecular mechanisms that are relevant to these memory deficits, we investigated the temporal profile of mouse hippocampal synaptic proteome changes at 20, 40, 50, 60, 70, 80, 90, and 100 weeks of age. Extracellular matrix proteins were the only group of proteins that showed robust and progressive up-regulation over time. This was confirmed by immunoblotting and histochemical analysis, which indicated that the increased levels of hippocampal extracellular matrix might limit synaptic plasticity as a potential cause of age-related cognitive decline. In addition, we observed that stochasticity in synaptic protein expression increased with age, in particular for proteins that were previously linked with various neurodegenerative diseases, whereas low variance in expression was observed for proteins that play a basal role in neuronal function and synaptic neurotransmission. Together, our findings show that both specific changes and increased variance in synaptic protein expression are associated with aging and may underlie reduced synaptic plasticity and impaired cognitive performance in old age. Molecular & Cellular
Alzheimer’s disease is caused by increased production or reduced clearance of amyloid-β, which results in the formation amyloid-β plaques and triggers a cascade of downstream events leading to progressive neurodegeneration. The earliest clinical symptoms of Alzheimer’s disease, i.e., memory loss, are however poorly understood from a molecular and cellular perspective. Here we used APPswe/PS1dE9 (APP/PS1) transgenic mice to study the early pre-pathological effects of increased amyloid-β levels on hippocampal synaptic plasticity and memory. Using an unbiased proteomics approach we show that the early increase in amyloid-β levels in APP/PS1 mice at three months of age coincides with a robust and significant upregulation of several protein components of the extracellular matrix in hippocampal synaptosome preparations. This increase in extracellular matrix levels occurred well before the onset of plaque formation and was paralleled by impairments in hippocampal long-term potentiation and contextual memory. Direct injection into the hippocampus of the extracellular matrix inactivating enzyme chondroitinase ABC restored both long-term potentiation and contextual memory performance. These findings indicate an important role for the extracellular matrix in causing early memory loss in Alzheimer’s disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s40478-014-0076-z) contains supplementary material, which is available to authorized users.
Cognitive decline is one of the earliest hallmarks of both normal and pathological brain aging. Here we used Ercc1 mutant mice, which are impaired in multiple DNA repair systems and consequently show accelerated aging and progressive memory deficits, to identify changes in the levels of hippocampal synaptic proteins that potentially underlie these age-dependent deficits. Aged Ercc1 mutant mice show normal gross hippocampal dendritic morphology and synapse numbers, and Ercc1 mutant hippocampal neurons displayed normal outgrowth and synapse formation in vitro. However, using isobaric tag for relative and absolute quantification (iTRAQ) of hippocampal synaptic proteins at two different ages, postnatal days 28 and 112, we observed a progressive decrease in synaptic ionotropic glutamate receptor levels and increased levels of G-proteins and of cell adhesion proteins. These together may cause long-term changes in synapse function. In addition, we observed a downregulation of mitochondrial proteins and concomitant upregulation of Na,K-ATPase subunits, which might compensate for reduced mitochondrial activity. Thus, our findings show that under conditions of apparent intact neuronal connectivity, levels of specific synaptic proteins are already affected during the early stages of DNA damage-induced aging, which might contribute to age-dependent cognitive decline.
TRIM3 regulates synaptic γ-actin levels. TRIM3-deficient mice consequently have higher hippocampal spine densities, increased long-term potentiation, and enhanced contextual fear memory consolidation, indicating that temporal control of ACTG1 levels by TRIM3 is required to constrain hippocampal plasticity within physiological boundaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.