Metaproteomics has matured into a powerful tool to assess functional interactions in microbial communities. While many metaproteomic workflows are available, the impact of method choice on results remains unclear. Here, we carry out a community-driven, multi-laboratory comparison in metaproteomics: the critical assessment of metaproteome investigation study (CAMPI). Based on well-established workflows, we evaluate the effect of sample preparation, mass spectrometry, and bioinformatic analysis using two samples: a simplified, laboratory-assembled human intestinal model and a human fecal sample. We observe that variability at the peptide level is predominantly due to sample processing workflows, with a smaller contribution of bioinformatic pipelines. These peptide-level differences largely disappear at the protein group level. While differences are observed for predicted community composition, similar functional profiles are obtained across workflows. CAMPI demonstrates the robustness of present-day metaproteomics research, serves as a template for multi-laboratory studies in metaproteomics, and provides publicly available data sets for benchmarking future developments.
Metaproteomics has matured into a powerful tool to assess functional interactions in microbial communities. While many metaproteomic workflows are available, the impact of method choice on results remains unclear. Here, we carried out the first community-driven, multi-lab comparison in metaproteomics: the critical assessment of metaproteome investigation study (CAMPI). Based on well-established workflows, we evaluated the effect of sample preparation, mass spectrometry, and bioinformatic analysis using two samples: a simplified, lab-assembled human intestinal model and a human fecal sample. We observed that variability at the peptide level was predominantly due to wet-lab workflows, with a smaller contribution of bioinformatic pipelines. These peptide-level differences largely disappeared at protein group level. While differences were observed for predicted community composition, similar functional profiles were obtained across workflows. CAMPI demonstrates the robustness of present-day metaproteomics research, serves as a template for multi-lab studies in metaproteomics, and provides publicly available data sets for benchmarking future developments.
Sterols are lipids that regulate multiple processes in eukaryotic cells, and are essential components of cellular membranes. Sterols are currently assumed to be kingdom specific, with phytosterol synthesis restricted to plants while animals are only able to synthesize cholesterol. Here, we challenge this assumption by demonstrating that the marine annelids Olavius and Inanidrilus synthesize the phytosterol sitosterol de novo. Using multi-omics, high-resolution metabolite imaging, heterologous gene expression and enzyme assays, we characterized the biosynthetic pathway of sitosterol and showed that it is the most abundant sterol in these worms (60%). We show that phytosterol synthesis partially overlaps with cholesterol synthesis and involves a non-canonical sterol methyltransferase (SMT), C24-SMT, an essential enzyme for sitosterol synthesis in plants, but not known from bilaterians. Our comparative phylogenetic analyses of C24-SMT homologs revealed that these are widely distributed across annelids and other animal phyla, including sponges and rotifers. Our findings show that phytosterol synthesis and use is not restricted to the plant kingdom, and indicate that the evolution of sterols in animals is more complex than previously assumed.
Stable isotope probing (SIP) approaches are a critical tool in microbiome research to determine associations between species and substrates. The application of these approaches ranges from studying microbial communities important for global biogeochemical cycling to host-microbiota interactions in the intestinal tract. Current SIP approaches, such as DNA-SIP or nanoSIMS, are limited in terms of sensitivity, resolution or throughput. Here we present an ultra-sensitive, high-throughput protein-based stable isotope probing approach (Protein-SIP). It allows for the determination of isotope incorporation into microbiome members with species level resolution using standard metaproteomics LC-MS/MS measurements. The analysis has been implemented as an open-source application (https://sourceforge.net/projects/calis-p/). We demonstrate sensitivity, precision and accuracy using bacterial cultures and mock communities with different labeling schemes. Finally, we measure translational activity using heavy water labeling in a 63-species community derived from human fecal samples grown on media simulating two different diets. Activity could be quantified on average for 27 species per sample, with 9 species showing significantly higher activity on a high protein diet, as compared to a high fiber diet. Surprisingly, among the species with increased activity on high protein were several Bacteroides species known as fiber consumers. Apparently, protein supply is a critical consideration when assessing growth of intestinal microbes on fiber, including fiber based prebiotics. In summary, we demonstrate that our Protein-SIP approach allows for the ultra-sensitive (0.01% to 10% label) detection of stable isotopes of elements found in proteins, using standard metaproteomics data.
Sterols are vital for nearly all eukaryotes. Their distribution differs in plants and animals, with phytosterols commonly found in plants whereas most animals are dominated by cholesterol. We show that sitosterol, a common sterol of plants, is the most abundant sterol in gutless marine annelids. Using multiomics, metabolite imaging, heterologous gene expression, and enzyme assays, we show that these animals synthesize sitosterol de novo using a noncanonical C-24 sterol methyltransferase (C 24 -SMT). This enzyme is essential for sitosterol synthesis in plants, but not known from most bilaterian animals. Our phylogenetic analyses revealed that C 24 -SMTs are present in representatives of at least five animal phyla, indicating that the synthesis of sterols common to plants is more widespread in animals than currently known.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.