PurposeIn the context of minimally invasive neurosurgery, steerable needles such as the one developed within the Horizon2020-funded EDEN2020 project (Frasson et al. in Proc Inst Mech Eng Part H J Eng Med 224(6):775–88, 2010. 10.1243/09544119JEIM663; Secoli and y Baena in IEEE international conference on robotics and automation, 2013) aspire to address the clinical challenge of better treatment for cancer patients. The direct, precise infusion of drugs in the proximity of a tumor has been shown to enhance its effectiveness and diffusion in the surrounding tissue (Vogelbaum and Aghi in Neuro-Oncology 17(suppl 2):ii3–ii8, 2015. 10.1093/neuonc/nou354). However, planning for an appropriate insertion trajectory for needles such as the one proposed by EDEN2020 is challenging due to factors like kinematic constraints, the presence of complex anatomical structures such as brain vessels, and constraints on the required start and target poses.MethodsWe propose a new parallelizable three-dimensional (3D) path planning approach called Adaptive Hermite Fractal Tree (AHFT), which is able to generate 3D obstacle-free trajectories that satisfy curvature constraints given a specified start and target pose. The AHFT combines the Adaptive Fractal Tree algorithm’s efficiency (Liu et al. in IEEE Robot Autom Lett 1(2):601–608, 2016. 10.1109/LRA.2016.2528292) with optimized geometric Hermite (Yong and Cheng in Comput Aided Geom Des 21(3):281–301, 2004. 10.1016/j.cagd.2003.08.003) curves, which are able to handle heading constraints.ResultsSimulated results demonstrate the robustness of the AHFT to perturbations of the target position and target heading. Additionally, a simulated preoperative environment, where the surgeon is able to select a desired entry pose on the patient’s skull, confirms the ability of the method to generate multiple feasible trajectories for a patient-specific case.ConclusionsThe AHFT method can be adopted in any field of application where a 3D path planner with kinematic and heading constraints on both start and end poses is required.
Over the past 10 years, minimally invasive surgery (MIS) has shown significant benefits compared to conventional surgical techniques, with reduced trauma, shorter hospital stays, and shorter patient recovery times. In neurosurgical MIS procedures, inserting a straight tool (e.g. catheter) is common practice in applications ranging from biopsy and laser ablation, to drug delivery and fluid evacuation. How to handle tissue deformation, target migration and access to deep-seated anatomical structures remain an open challenge, affecting both the preoperative planning phase and eventual surgical intervention. Here, we present the first neurosurgical platform in the literature, able to deliver an implantable steerable needle for a range of diagnostic and therapeutic applications, with a short-term focus on localised drug delivery. This work presents the system’s architecture and first in vivo deployment with an optimised surgical workflow designed for pre-clinical trials with the ovine model, which demonstrate appropriate function and safe implantation.
Laser interstitial thermal therapy (LiTT) is a minimally invasive alternative to conventional open surgery for drugresistant focal mesial temporal lobe epilepsy (MTLE). Recent studies suggest that higher seizure freedom rates are correlated with maximal ablation of the mesial hippocampal head, whilst sparing of the parahippocampal gyrus (PHG) may reduce neuropsychological sequelae. Current commercially available laser catheters are inserted following manually planned straight-line trajectories, which cannot conform to curved brain structures, such as the hippocampus, without causing collateral damage or requiring multiple insertions. Objectives: The clinical feasibility and potential of curved LiTT trajectories through steerable needles has yet to be investigated. This is the focus of our work. Methods: We propose a GPU-accelerated computer-assisted planning (CAP) algorithm for steerable needle insertions that generates optimized curved 3D trajectories with maximal ablation of the amygdalohippocampal complex and minimal collateral damage to nearby structures, while accounting for a variable ablation diameter (5 − 15mm). Results: Simulated trajectories and ablations were performed on 5 patients with mesial temporal sclerosis (MTS), which were identified from a prospectively managed database. The algorithm generated obstacle-free paths with significantly greater target area ablation coverage and lower PHG ablation variance compared to straight line trajectories. Conclusions: The presented CAP algorithm returns increased ablation of the amygdalohippocampal complex, with lower patient risk scores compared to straight-line trajectories. Significance: This is the first clinical application of preoperative planning for steerable needle based LiTT. This study suggests that steerable needles have the potential to improve LiTT procedure efficacy whilst improving the safety and should thus be investigated further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.