Our hypothesis was that recovery responses (RI and RII) upon rehydration, after 1 and 8 d of moderate (WDI) and severe water deficit (WDII), are evidence of tolerance in two commercial bean cultivars, Tacarigua (T cv) and VUL-73-40 (V cv). Recovery of leaf water (Cw) and osmotic potentials (Cs), and relative water content (LRWC), showed strong dependence on soil water potential (sCw) followed by protein content; recovery connection between stomatal conductance and soil Cw is showed. Chlorophyll (a 'b), Ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) activity, dry biomass (DM), and leaf area (LA) recovery were sensitive to WD intensity. Specific leaf area (SLA) and leaf density (D) recovery were less dependent on WD intensity and in time-dependent manner; V cv recovery was slower, showed faster recovery of Rubisco activity and DM due to slower recovery in SLA and D, which promoted it. Rubisco activity presented correlations with LRWC and Cw at moderate and severe WD in both cultivars, and significant correlation with Cs was observed in V cv. We conclude that recovery after rehydration reveals intrinsic tolerance to WD, due to an integration of metabolic and structural interactions, in responses to leaf water status components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.