Steep environmental gradients provide ideal settings for studies of potentially adaptive phenotypic and genetic variation in plants. The accurate timing of flowering is crucial for reproductive success and is regulated by several pathways, including the vernalization pathway. Among the numerous genes known to enable flowering in response to vernalization, the most prominent is FLOWERING LOCUS C (FLC). FLC and other genes of the vernalization pathway vary extensively among natural populations and are thus candidates for the adaptation of flowering time to environmental gradients such as altitude. We used 15 natural Arabidopsis (Arabidopsis thaliana) genotypes originating from an altitudinal gradient (800-2,700 m above sea level) in the Swiss Alps to test whether flowering time correlated with altitude under different vernalization scenarios. Additionally, we measured the expression of 12 genes of the vernalization pathway and its downstream targets. Flowering time correlated with altitude in a nonlinear manner for vernalized plants. Flowering time could be explained by the expression and regulation of the vernalization pathway, most notably by AGAMOUS LIKE19 (AGL19), FLOWERING LOCUS T (FT), and FLC. The expression of AGL19, FT, and VERNALIZATION INSENSITIVE3 was associated with altitude, and the regulation of MADS AFFECTING FLOWERING2 (MAF2) and MAF3 differed between low-and highaltitude genotypes. In conclusion, we found clinal variation across an altitudinal gradient both in flowering time and the expression and regulation of genes in the flowering time control network, often independent of FLC, suggesting that the timing of flowering may contribute to altitudinal adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.