Time series of satellite-derived surface chlorophyll-a concentration (Chl) in 1997-2009 were used to examine for trends in the timing of the annual phytoplankton bloom maximum. Significant trends towards earlier phytoplankton blooms were detected in about 11% of the area of the Arctic Ocean with valid Chl data, e.g. in the Hudson Bay, Foxe Basin, Baffin Sea, off the coasts of Greenland, in the Kara Sea and around Novaya Zemlya. These areas roughly coincide with areas where ice concentration has decreased in early summer (June), thus making the earlier blooms possible. In the selected areas, the annual phytoplankton bloom maximum has advanced by up to 50 days which may have consequences for the Arctic food chain and carbon cycling. Outside the Arctic, the annual Chl maximum has become earlier in boreal North Pacific but later in the North Atlantic.
Several ocean primary production algorithms using satellite data were evaluated on a large archive of net primary production (NPP) and chlorophyll‐a (Chl‐a) measurements collected by the California Cooperative Fisheries Investigations program in the California Current. The best algorithm matching in situ data was found by empirically adjusting the Behrenfeld‐Falkowski Vertically Generalized Production Model. Satellite‐derived time series of NPP were calculated for the California Current area. Significant increase in NPP and Chl‐a annual peak levels, i.e., the “bloom magnitude,” were found along the coasts of the California Current as well as other major eastern boundary currents for the period of modern ocean color data (1997–2007). The reasons for this increase are not clear but are associated with various environmental conditions.
The statistics of sea-surface fronts detected with the automated histogram method were studied in the California Current using sea-surface temperature (SST) and chlorophyll-a concentration (Chl) images from various satellite sensors. Daily maps of fronts were averaged into monthly composites of front frequency (FF) spanning 29 years (1981-2009) for SST and 14 years (1997-2010) for Chl. The large-scale distributions of frontal frequency of both SST (FFsst) and of Chl (FFchl) had a 500-700 km wide band of elevated values (4-7%) along the coast that roughly coincided with the area of increased mesoscale eddy activity. FFsst and FFchl were positively correlated at monthly and seasonal frequencies, but the year-to-year variations were not significantly correlated. The long-period (1 year and longer) variability in FFsst is influenced by the large-scale SST gradient, while at shorter timescales the influence of the Coastal Upwelling Index is evident. In contrast with FFsst, FFchl variability is less related to the coherent large-scale forcing and has stronger sensitivity to local forcings in individual areas. Decadal-scale increasing trends in the frequency of both SST and Chl fronts were detected in the Ensenada Front area (general area of the A-Front study) and corresponded to, respectively, trends towards colder SST and increasing chlorophyll-a concentration.
[1] Global time series of satellite-derived winds and surface chlorophyll concentration (Chl-a) show patterns of coherent areas with either positive or negative correlations. The correlation between Chl-a and wind speed is generally negative in areas with deep mixed layers and positive in areas with shallow mixed layers. These patterns are interpreted in terms of the main limiting factors that control phytoplankton growth, i.e., either nutrients that control phytoplankton biomass in areas with positive correlation between Chl-a and wind speed or light that controls phytoplankton biomass in areas with negative correlation between Chl-a and wind speed. More complex patterns are observed in the equatorial regions due to regional specificities in physical-biological interactions. These correlation patterns can be used to map out the biogeochemical provinces of the world ocean in an objective way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.