The self-amplifying cascade of messenger and effector molecules of the complement system serves as a powerful danger-sensing system that protects the host from a hostile microbial environment, while maintaining proper tissue and organ function through effective clearance of altered or dying cells. As an important effector arm of innate immunity, it also plays important roles in the regulation of adaptive immunity. Innate and adaptive immune responses have been identified as crucial players in the pathogenesis of arterial hypertension and hypertensive end organ damage. In line with this view, complement activation may drive the pathology of hypertension and hypertensive injury through its impact on innate and adaptive immune responses. It is well known that complement activation can cause tissue inflammation and injury and complement-inhibitory drugs are effective treatments for several inflammatory diseases. In addition to these proinflammatory properties, complement cleavage fragments of C3 and C5 can exert anti-inflammatory effects that dampen the inflammatory response to injury. Recent experimental data strongly support a role for complement in arterial hypertension. The remarkably similar clinical and histopathological features of malignant nephrosclerosis and atypical hemolytic uremic syndrome, which is driven by complement activation, suggest a role for complement also in the development of malignant nephrosclerosis. Herein, we will review canonical and noncanonical pathways of complement activation as the framework to understand the multiple roles of complement in arterial hypertension and hypertensive end organ damage.
Traditionally, arterial hypertension and subsequent end-organ damage have been attributed to haemodynamic factors, but increasing evidence indicates that inflammation also contributes to the deleterious consequences of this disease. The immune system has evolved to prevent invasion of foreign microorganisms and to promote tissue healing after injury. However, this beneficial activity comes at a cost of collateral damage when the immune system overreacts to internal injury, such as prehypertension. Over the past few years, important findings have revolutionized hypertension research. Firstly, in 2007, a seminal paper showed that adaptive immunity is involved in the pathogenesis of hypertension. Secondly, salt storage in the skin and its consequences for cardiovascular physiology were discovered. Thirdly, after the discovery that salt promotes the differentiation of CD4 T cells into T 17 cells, it was demonstrated that salt directly changes several cells of the innate and adaptive immune system and aggravates autoimmune disease but may improve antimicrobial defence. Herein, we will review pathways of activation of immune cells by salt in hypertension as the framework for understanding the multiple roles of salt and immunity in arterial hypertension and autoimmune disease.
Increasing evidence indicates that hypertension and hypertensive end organ damage are not only mediated by haemodynamic injury but that inflammation also plays an important role. The complement system protects the host from a hostile microbial environment and maintains tissue and cell integrity through the elimination of altered or dead cells. As an important effector arm of innate immunity, it plays also central roles in the regulation of adaptive immunity. Thus, complement activation may drive the pathology of hypertension through its effects on innate and adaptive immune responses, aside from direct effects on the vasculature. Recent experimental data strongly support a role for complement in all stages of arterial hypertension. The remarkably similar clinical and histopathological features of malignant nephrosclerosis and atypical haemolytic uraemic syndrome suggest also a role for complement in the development of malignant nephrosclerosis. Here, we review the role of complement in hypertension and hypertensive end organ damage. Linked Articles This article is part of a themed issue on Canonical and non‐canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.