The present communication describes the properties of isocitrate dehydrogenase in crude extracts from the unicellular Anacystis nidulans and from heterocysts and vegetative cells of Nostoc muscorum and Anabaena cylindrica. The activity levels of this enzyme are much higher in heterocysts than in vegetative cells of N. muscorum and A. cylindrica. Isocitrate dehydrogenase is virtually inactive in vegetative cells of A. cylindrica. The enzyme is negatively regulated by the reduction charge and scarcely affected by oxoglutarate in the three cyanobacteria. The inhibition by ATP and ADP is competitive with respect to isocitrate and NADP+ in A. cylindrica and N. muscorum and noncompetitive in A. nidulans. Isocitrate dehydrogenase from the three cyanobacteria seems to be a hysteretic enzyme. All the experimental data suggest that the major physiological role of isocitrate and the isocitrate dehydrogenase in heterocysts is not to generate reducing equivalents for N2-fixation. Oxoglutarate formed by the enzyme reaction is likely required for the biosynthesis of glutamate inside the heterocysts. Thioredoxin preparations from spinach chloroplasts or from A. cylindrica activate isocitrate dehydrogenase from either heterocysts or vegetative cells of A. cylindrica. Activation is completed within seconds and requires dithiothreitol besides thioredoxin. The thioredoxin preparation which activates isocitrate dehydrogenase also activates NADP+-dependent malate dehydrogenase from spinach chloroplasts or heterocysts of A. cylindrica. Isocitrate dehydrogenase from A. cylindrica is deactivated by oxidized glutathione. It is speculated that isocitrate dehydrogenase and thioredoxin play a role in the differentiation of vegetative cells to heterocysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.