Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird-plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought.
We studied 86 species of hummingbird‐pollinated flowers and their pollinators at a coastal lowland site and two highland rain forest sites in southeastern Brazil. The Jaccard index for hummingbird‐pollinated floras showed greater floristic similarity between the two highland communities than between floras of high altitudes and that of near sea level. The lowland site had slightly greater richness than either of the two highland sites. Bromeliaceae was the most important family, accounting for ca. 36 percent of the bird‐pollinated species and comprising 33 percent of the richest flowers. The plant populations bloomed annually for the most part. Both the wet lowland and the dry highland floras showed flowering seasonality, whereas the cloud highland flora had aseasonal flowering. A hermit hummingbird was the major pollinator in the lowland community. A hermit and a non‐hermit hummingbird shared most of the floral resources in the two highland communities. Hermit hummingbirds are the major pollinators of hummingbird‐pollinated floras in the Atlantic rain forests of southeastern Brazil. These areas may be as rich as Central and other South American areas in hummingbird‐pollinated flowers, and altogether present an older development history when compared to the North American flora.
Large-scale geographical patterns of biotic specialization and the underlying drivers are poorly understood, but it is widely believed that climate plays an important role in determining specialization. As climate-driven range dynamics should diminish local adaptations and favor generalization, one hypothesis is that contemporary biotic specialization is determined by the degree of past climatic instability, primarily Quaternary climate-change velocity. Other prominent hypotheses predict that either contemporary climate or species richness affect biotic specialization. To gain insight into geographical patterns of contemporary biotic specialization and its drivers, we use network analysis to determine the degree of specialization in plant-hummingbird mutualistic networks sampled at 31 localities, spanning a wide range of climate regimes across the Americas. We found greater biotic specialization at lower latitudes, with latitude explaining 20–22% of the spatial variation in plant-hummingbird specialization. Potential drivers of specialization - contemporary climate, Quaternary climate-change velocity, and species richness - had superior explanatory power, together explaining 53–64% of the variation in specialization. Notably, our data provides empirical evidence for the hypothesized roles of species richness, contemporary precipitation and Quaternary climate-change velocity as key predictors of biotic specialization, whereas contemporary temperature and seasonality seem unimportant in determining specialization. These results suggest that both ecological and evolutionary processes at Quaternary time scales can be important in driving large-scale geographical patterns of contemporary biotic specialization, at least for co-evolved systems such as plant-hummingbird networks.
SUMMARYThat hummingbird-pollinated plants predominantly have red flowers has been known for decades, but well-investigated research studies are still rare. Preference tests have shown that hummingbirds do not have an innate preference for red colours. In addition, hummingbirds do not depend solely upon red flowers, because white-flowered hummingbird-pollinated plants are also common and temporarily abundant. Here we show that both white and red hummingbird-pollinated flowers differ from beepollinated flowers in their reflection properties for ultraviolet (UV) light. Hummingbird-pollinated red flowers are on average less UV reflective, and white hummingbird-pollinated flowers are more UV reflective than the same coloured bee-pollinated ones. In preference tests with artificial flowers, neotropical orchid bees prefer red UV-reflecting artificial flowers and white UVnonreflecting flowers over red and white flowers with the opposite UV properties. By contrast, hummingbirds showed no preference for any colour in the same tests. Plotting floral colours and test stimuli into the honeybees' perceptual colour space suggests that the less attractive colours are achromatic for bees and therefore more difficult to detect against the background. This underlying colour preference in bees might provide hummingbirds with a private niche that is not attractive to bees. Supplementary material available online at
Relationships between ornithophilous flowers and hummingbirds have been little studied in southern South America, where hummingbird species richness is low. We studied an ornithophilous flower assemblage and the hummingbird pollinators in a montane forest in southeastern Brazil. Twenty‐three native hummingbird‐pollinated plant species in 21 genera and 14 families were observed. Bromeliaceae, Fabaceae, Gesneriaceae, and Lobeliaceae are represented by more than one species within the assemblage. Flower shapes vary from narrow tube to bowl‐shape, but tubular flowers prevail. The variety of flower shapes and sizes results in diverse pollen placement on the body parts of hummingbird visitors, although pollen is deposited mostly on the bill. Sugar concentration in nectar averages 22.1%, and nectar volume per flower averages 16.9 μl. The plant populations bloom for one month to year‐round, and their flowering approaches the steady‐state pattern. Four flower subsets may be defined within the assemblage, each subset related to the bill size and foraging habits of the most frequent bird visitor. Of the six species of hummingbirds recorded at the study site, four are common and largely resident. The four hummingbirds differ in bill size, body mass, and favoured foraging sites, attributes which reflect their favoured flower subsets. One hermit and one trochiline hummingbird share most of the flower species they use, these two birds being the major pollinators within the flower assemblage. This montane forest community may be viewed as medium‐rich in ornithophilous flower species and poor in hummingbird species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.