Marine gateways play a critical role in the exchange of water, heat, salt and nutrients between oceans and seas. As a result, changes in gateway geometry can significantly alter both the pattern of global ocean circulation and associated heat transport and climate, as well as having a profound impact on local environmental conditions. Mediterranean-Atlantic marine corridors that pre-date the modern Gibraltar Strait, closed during the Late Miocene and are now exposed on land in northern Morocco and southern Spain. The restriction and closure of these Miocene connections resulted in extreme salinity fluctuations in the Mediterranean, leading to the precipitation of thick evaporites. This event is known as the Messinian Salinity Crisis (MSC). The evolution and closure of the Mediterranean-Atlantic gateways are a critical control on the MSC, but at present the location, geometry and age of these gateways is still highly controversial, as is the impact of changing Mediterranean outflow on Northern Hemisphere circulation. Here, we present a comprehensive overview of the evolution of the Late Miocene gateways and the nature of Mediterranean-Atlantic exchange as deduced from published studies focussed both on the sediments preserved within the fossil corridors and inferences that can be derived from data in the adjacent basins. We also consider the possible impact of evolving exchange on both the Mediterranean and global climate and highlight the main enduring challenges for reconstructing past Mediterranean-Atlantic exchange.
We search for the Mediterranean-Atlantic gateway that delivered the marine salt during the Messinian Salinity Crisis All previously proposed late Miocene gateways through southern Spain and northern Morocco are shown to have closed during the latest Tortonian-earliest Messinian The Gibraltar Corridor is considered to sole candidate gateway and was most likely open during most of the Messinian Salinity Crisis The dimensions of the Gibraltar Corridor during the MSC are estimated based on Mediterranean salinity fluctuations using geophysical models A revised palaeogeographic evolution of the Gibraltar region is presented for the late Tortonian to early Zanclean.
International audienceThe contourite depositional system (CDS) along the southwestern Iberian Margin (SIM), within the Gulf of Cadiz and offshore areas of western Portugal bear the unmistakable signal of Mediterranean Outflow Water (MOW) exiting the Strait of Gibraltar. This locality records key information concerning the effects of tectonic activity on margin sedimentation, the effects of MOW dynamics on Atlantic circulation, and how these factors may have influenced global climate. Over the last four decades, numerous studies have been conducted on the late Miocene, Pliocene and Quaternary sedimentary stacking pattern of Neogene basins along the SIM for both academic and resources exploration purposes. However, understanding of the region rests primarily on basic seismic stratigraphy calibrated with limited data from only a few exploration wells. The Integrated Ocean Drilling Program (IODP) Expedition 339 recently drilled five sites in the Gulf of Cadiz and two sites on the western Iberian margin. The integration of core and borehole data with other geophysical databases leads us to propose a new stratigraphic framework. Interpretation of IODP Exp. 339 data along with that from industry sources and onshore outcrop analysis helps refine our understanding of the SIM's sedimentary evolution.We identify significant changes in sedimentation style and dominant sedimentary processes, coupled with widespread depositional hiatuses along the SIM within the Cadiz, Sanlucar, Doñana, Algarve and Alentejo basins. Following the 4.5 Ma cessation of a previous phase of tectonic activity related to the Miocene–Pliocene boundary, tectonics continued to influence margin development, downslope sediment transport and CDS evolution. Sedimentary features indicate tectonic pulses of about 0.8–0.9 Ma duration with a pronounced overprint of ~ 2–2.5 Ma cycles. These more protracted cycles relate to the westward rollback of subducted lithosphere at the convergent Africa-Eurasia plate boundary as its previous NW–SE compressional regime shifted to a WNW–ESE direction. Two major compressional events affecting to the Neogene basins at 3.2–3 Ma and 2–2.3 Ma help constrain the three main stages of CDS evolution. The stages include: 1) the initial-drift stage (5.33–3.2 Ma) with a weak MOW, 2) a transitional-drift stage (3.2–2 Ma) and 3) a growth-drift stage (2 Ma-present time) with enhanced MOW circulation into the Atlantic and associated contourite development due to greater bottom-current velocity. Two minor Pleistocene discontinuities at 0.7–0.9 Ma and 0.3–0.6 Ma record the effects of renewed tectonic activity on basin evolution, appearing most prominently in the Doñana basin. Several discontinuities bounding major and minor units appear on seismic profiles. Quaternary records offer the clearest example of this, with major units of about 0.8–0.9 Ma and sub-units of 0.4–0.5 Ma. Sedimentation is controlled by a combination of tectonics, sediment supply, sea-level and climate. This research identifies time scales of tectonic controls on deep-mari...
General rightsThis document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms , G. Acton (5) , M. Gutjahr (6) , P. Grunert (7) , Á. García-Gallardo (7) , N. Andersen (8) . 4(1) Dept Pliocene boundary at around 826 mbsf. This boundary is associated with a distinct and abrupt 28 change in depositional environment. During the latest Messinian, hemipelagic sediments exhibiting 29 precession-induced climate variability were deposited. These are overlain by Pliocene sediments 30 deposited at a much higher sedimentation rate, with much higher and more variable XRF-scanning 31 Zr/Al ratios than the underlying sediment, and that show evidence of winnowing, particle sorting 32 and increasing grain size, which we interpret to be related to the increasing flow of MOW. Pliocene 33 sedimentary cyclicity is clearly visible in both the benthic δ
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.