Bilirubin, the principal tetrapyrrole, bile pigment and catabolite of haem, is an emerging biomarker of disease resistance, which may be related to several recently documented biological functions. Initially believed to be toxic in infants, the perception of bilirubin has undergone a transformation: it is now considered to be a molecule that may promote health in adults. Data from the last decade demonstrate that mildly elevated serum bilirubin levels are strongly associated with reduced prevalence of chronic diseases, particularly cardiovascular diseases (CVDs), as well as CVD-related mortality and risk factors. Recent data also link bilirubin to other chronic diseases, including cancer and Type 2 diabetes mellitus, and to all-cause mortality. Therefore, there is evidence to suggest that bilirubin is a biomarker for reduced chronic disease prevalence and a predictor of all-cause mortality, which is of important clinical significance. In the present review, detailed information on the association between bilirubin and all-cause mortality, as well as the pathological conditions of CVD, cancer, diabetes and neurodegenerative diseases, is provided. The mechanistic background concerning how bilirubin and its metabolism may influence disease prevention and its clinical relevance is also discussed. Given that the search for novel biomarkers of these diseases, as well as for novel therapeutic modalities, is a key research objective for the near future, bilirubin represents a promising candidate, meeting the criteria of a biomarker, and should be considered more carefully in clinical practice as a molecule that might provide insights into disease resistance. Clearly, however, greater molecular insight is warranted to support and strengthen the conclusion that bilirubin can prevent disease, with future research directions also proposed.
Recent epidemiological and clinical data show protection from CVD (cardiovascular disease), all-cause mortality and cancer in subjects with GS (Gilbert's syndrome), which is characterized by a mildly elevated blood bilirubin concentration. The established antioxidant effect of bilirubin, however, contributes only in part to this protection. Therefore we investigated whether mildly elevated circulating UCB (unconjugated bilirubin) is associated with altered lipid metabolism. The study was performed on GS and age- and gender-matched healthy subjects (n=59 per group). Full lipoprotein profile, TAG (triacylglycerols), Apo (apolipoprotein)-A1, Apo-B, lipoprotein(a), the subfractions of LDL (low-density lipoprotein) and selected pro-inflammatory mediators were analysed. A hyperbilirubinaemic rodent model (Gunn rats, n=40) was investigated to further support the presented human data. GS subjects had significantly (P<0.05) improved lipid profile with reduced total cholesterol, LDL-C (LDL-cholesterol), TAG, low- and pro-atherogenic LDL subfractions (LDL-1+LDL-2), Apo-B, Apo-B/Apo-A1 ratio and lower IL-6 (interleukin 6) and SAA (serum amyloid A) concentrations (P=0.094). When the control and GS groups were subdivided into younger and older cohorts, older GS subjects demonstrated reduced lipid variables (total cholesterol and LDL-C, TAG and LDL-C subfractions, Apo-B/Apo-A1 ratio; P<0.05; Apo-B: P<0.1) compared with controls. These data were supported by lipid analyses in the rodent model showing that Gunn rat serum had lower total cholesterol (2.29±0.38 compared with 1.27±0.72 mM; P<0.001) and TAG (1.66±0.67 compared with 0.99±0.52 mM; P<0.001) concentrations compared with controls. These findings indicate that the altered lipid profile and the reduced pro-inflammatory status in hyperbilirubinaemic subjects, particularly in the older individuals, probably contribute additionally to the commonly accepted beneficial antioxidant effects of bilirubin in humans.
A positive relationship between unconjugated bilirubin and free plasma haem, iron and carboxy haemoglobin indicated a positive feedback loop of haem oxygenase induction possibly mediated by unconjugated bilirubin. Furthermore, reduced body mass index in Gilbert's syndrome individuals was linked to reduced inflammation status, which could be influenced by circulating haem oxygenase catabolites and contribute to reduced risk of noncommunicable diseases in this population.
Energy metabolism, involving the ATP-dependent AMPK-PgC-Ppar pathway impacts metabolic health immensely, in that its impairment can lead to obesity, giving rise to disease. Based on observations that individuals with Gilbert’s syndrome (GS; UGT1A1*28 promoter mutation) are generally lighter, leaner and healthier than controls, specific inter-group differences in the AMPK pathway regulation were explored. Therefore, a case-control study involving 120 fasted, healthy, age- and gender matched subjects with/without GS, was conducted. By utilising intra-cellular flow cytometry (next to assessing AMPKα1 gene expression), levels of functioning proteins (phospho-AMPK α1/α2, PgC 1 α, Ppar α and γ) were measured in PBMCs (peripheral blood mononucleated cells). In GS individuals, rates of phospho-AMPK α1/α2, -Ppar α/γ and of PgC 1α were significantly higher, attesting to a boosted fasting response in this condition. In line with this finding, AMPKα1 gene expression was equal between the groups, possibly stressing the post-translational importance of boosted fasting effects in GS. In reflection of an apparently improved health status, GS individuals had significantly lower BMI, glucose, insulin, C-peptide and triglyceride levels. Herewith, we propose a new theory to explain why individuals having GS are leaner and healthier, and are therefore less likely to contract metabolic diseases or die prematurely thereof.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.