Dead wood such as coarse dead wood debris (CWD) is an important component in natural forests since it increases the diversity of plants, fungi, and animals. It serves as habitat, provides nutrients and is conducive to forest regeneration, ecosystem stabilization and soil protection. In commercially operated forests, dead wood is often unwanted as it can act as an originator of calamities. Accordingly, efficient CWD monitoring approaches are needed. However, due to the small size of CWD objects satellite data-based approaches cannot be used to gather the needed information and conventional ground-based methods are expensive. Unmanned aerial systems (UAS) are becoming increasingly important in the forestry sector since structural and spectral features of forest stands can be extracted from the high geometric resolution data they produce. As such, they have great potential in supporting regular forest monitoring and inventory. Consequently, the potential of UAS imagery to map CWD is investigated in this study. The study area is located in the center of the Hainich National Park (HNP) in the federal state of Thuringia, Germany. The HNP features natural and unmanaged forest comprising deciduous tree species such as Fagus sylvatica (beech), Fraxinus excelsior (ash), Acer pseudoplatanus (sycamore maple), and Carpinus betulus (hornbeam). The flight campaign was controlled from the Hainich eddy covariance flux tower located at the Eastern edge of the test site. Red-green-blue (RGB) image data were captured in March 2019 during leaf-off conditions using off-the-shelf hardware. Agisoft Metashape Pro was used for the delineation of a three-dimensional (3D) point cloud, which formed the basis for creating a canopy-free RGB orthomosaic and mapping CWD. As heavily decomposed CWD hardly stands out from the ground due to its low height, it might not be detectable by means of 3D geometric information. For this reason, solely RGB data were used for the classification of CWD. The mapping task was accomplished using a line extraction approach developed within the object-based image analysis (OBIA) software eCognition. The achieved CWD detection accuracy can compete with results of studies utilizing high-density airborne light detection and ranging (LiDAR)-based point clouds. Out of 180 CWD objects, 135 objects were successfully delineated while 76 false alarms occurred. Although the developed OBIA approach only utilizes spectral information, it is important to understand that the 3D information extracted from our UAS data is a key requirement for successful CWD mapping as it provides the foundation for the canopy-free orthomosaic created in an earlier step. We conclude that UAS imagery is an alternative to laser data in particular if rapid update and quick response is required. We conclude that UAS imagery is an alternative to laser data for CWD mapping, especially when a rapid response and quick reaction, e.g., after a storm event, is required.
Abstract. In this study, a dense Copernicus Sentinel-1 time series is analyzed to gain a better understanding of the influence of undergrowth vegetation, in particular of eagle fern (Pteridium aquilinum), on the C-band SAR signal in a temperate forest in the Free State of Thuringia, Germany. Even if signals from the ground below the canopy may not be expected at C-band, previous studies showed seasonal fluctuations of the backscatter for temperate forests without canopy closure, notably for evergreen coniferous stands. Many factors can be responsible for these observed fluctuations, but in this study, we analyze one possible factor: the presence of undergrowth vegetation, in particular, of fern. Especially, the Sentinel-1 backscatter signal is analyzed for different acquisition configurations regarding its temporal and its spatial stability at different growth stages. This time series study shows that a difference of backscattered signal of up to 0.7 dB exists between forest patches with a dense fern density in the understory and the ones with low undergrowth vegetation. This signal difference depends on the season and is remarkably strong comparing winter (no fern undergrowth) with summer (major fern undergrowth).
Abstract. In this study, we analyze Sentinel-1 time series data to characterize the observed seasonality of different land cover classes in eastern Thuringia, Germany and to identify multi-temporal metrics for their classification. We assess the influence of different polarizations and different pass directions on the multi-temporal backscatter profile. The novelty of this approach is the determination of phenological parameters, based on a tool that has been originally developed for optical imagery. Furthermore, several additional multitemporal metrics are determined for the different classes, in order to investigate their separability for potential multi-temporal classification schemes. The results of the study show a seasonality for vegetation classes, which differs depending on the considered class: whereas pastures and broad-leaved forests show a decrease of the backscatter in VH polarization during summer, an increase of the backscatter in VH polarization is observed for coniferous forest. The observed seasonality is discussed together with meteorological information (precipitation and air temperature). Furthermore, a dependence of the backscatter of the pass direction (ascending/descending) is observed particularly for the urban land cover classes. Multi-temporal metrics indicate a good separability of principal land cover classes such as urban, agricultural and forested areas, but further investigation and use of seasonal parameters is needed for a distinct separation of specific forest sub-classes such as coniferous and deciduous.
<p>The Arctic is experiencing severe changes to its landscapes due to the thawing of permafrost influenced by the twofold increase of temperature across the Arctic due to global warming compared to the global average. This process, which affects the livelihoods of indigenous people, is also associated with the further release of greenhouse gases and also connected to ecological impacts on the arctic flora and fauna. These small-scale changes and disturbances to the land surface caused by permafrost thaw have been inadequately documented.</p><p>To better understand and monitor land surface changes, the project "UndercoverEisAgenten" is using a combination of local knowledge, satellite remote sensing, and data from unmanned aerial vehicles (UAVs) to study permafrost thaw impacts in Northwest Canada. The high-resolution UAV data will serve as a baseline for further analysis of optical and radar remote sensing time series data. The project aims to achieve two main goals: 1) to demonstrate the value of using unmanned aerial vehicle (UAV) data in remote regions of the global north, and 2) to involve young citizen scientists from schools in Canada and Germany in the process. By involving students in the project, the project aims to not only expand the use of remote sensing in these regions, but also provides educational opportunities for the participating students. By using UAVs and satellite imagery, the project aims to develop a comprehensive archive of observable surface features that indicate the degree of permafrost degradation. This will be accomplished through the use of automatic image enhancement techniques, as well as classical image processing approaches and machine learning-based classification methods. The data is being prepared to be shared and analyzed through a web-based crowd mapping application. The project aims to involve the students in independently acquiring data and developing their own scientific questions through the use of this application.</p><p>In September 2022, a first expedition was conducted in the Northwest Territories, Canada and UAV data was collected with the assistance of students from Moose Kerr School in Aklavik. The data consists of approximately 30,000 individual photos taken over an area of around 13&#160;km&#178;. The expedition also provided an opportunity for the students to learn about the basics of data collection and the goals of the collaborative permafrost survey, which included the incorporation of local knowledge to address the questions of the local community.</p><p>By involving school students in the data acquisition, classification and evaluation process, the project also seeks to transfer knowledge and raise awareness about global warming, permafrost, and related regional and global challenges. Additionally, a connection through the shared research experience between students in Germany and Canada is established to enable the exchange of knowledge. The resulting scientific data will provide new insights into biophysical processes in Arctic regions and contribute to a better understanding of the state and change of permafrost in the Arctic. This project is funded by the German Federal Ministry of Education and Research and was initiated in 2021.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.