Immune modulatory effects of EPA and DHA are well described. However, these fatty acids must be effectively incorporated into cell membrane phospholipids to modify cell function. To address the absence of human data regarding short-term incorporation, the present study investigated the incorporation of EPA and DHA into white blood cells (WBC) at different time points during 1 wk of supplementation with a medical food, which is high in protein and leucine and enriched with fish oil and specific oligosaccharides. Additionally, the effects on ex vivo immune function were determined. In a single-arm, open label study, 12 healthy men and women consumed 2 × 200 mL of medical food providing 2.4 g EPA, 1.2 g DHA, 39.7 g protein (including 4.4 g L-leucine), and 5.6 g oligosaccharides daily. Blood samples were taken at d 0 (baseline), 1, 2, 4, and 7. Within 1 d of nutritional intervention, the percentage of EPA in phospholipids of WBC increased from 0.5% at baseline to 1.3% (P < 0.001). After 1 wk, the percentage of EPA rose to 2.8% (P < 0.001). Additionally, the production of proinflammatory cytokines in LPS-stimulated whole blood cultures was significantly increased within 1 wk. Nutritional supplementation with a fish oil-enriched medical food significantly increased the percentage of EPA in phospholipids of WBC within 1 wk. Simultaneously, ex vivo immune responsiveness to LPS increased significantly. These results hold promise for novel applications such as fast-acting nutritional interventions in cancer patients, which should be investigated in future studies.
BackgroundThe majority of cancer patients loses weight and becomes malnourished during the course of their disease. Metabolic alterations and reduced immune competence lead to wasting and an increased risk of infectious complications. In the present study, the effect of a nutritionally complete medical food, which is high in protein and leucine and enriched with fish oil and specific oligosaccharides, was investigated on immune function, nutritional status, and inflammation in patients with esophageal cancer and compared with routine care.MethodsIn this exploratory double-blind study, 64 newly diagnosed esophageal cancer patients were randomized. All patients received dietary counselling and dietary advice. In the Active group, all patients received the specific medical food for 4 weeks before the start of anticancer therapy. In the routine care control arm, patients with <5% weight loss received a non-caloric placebo product, and patients with weight loss ≥5% received an iso-caloric control product to secure blinding of the study. The required study parameters of body weight and performance status were recorded at baseline and after 4 weeks of nutritional intervention, and patients were asked to complete quality of life questionnaires. In addition, blood samples were taken for the measurement of several immune, nutritional, and safety-parameters.ResultsNo effect of the specific nutritional intervention could be detected on ex vivo stimulations of blood mononuclear cells. By contrast, body weight was significantly increased (P < 0.05) and ECOG performance status was improved after intervention with the specific medical food (P < 0.05). In addition, serum Prostaglandin E2 (PGE2) levels were significantly decreased in the specific medical food group and increased in the control group (P = 0.002).ConclusionsNutritional intervention with the specific medical food significantly increased body weight and improved performance status compared with routine care in newly diagnosed esophageal cancer patients. This effect was accompanied by significantly reduced serum PGE2 levels.
The importance of CD45RB expression on T cells was already shown in mice where CD45RB(high) expression determines pathogenic potential. In this study, we analyzed the expression of CD45RA, CD45RB, and CD45RO on CD4(+) T lymphocytes in the intestinal mucosa and in the circulation of patients with inflammatory bowel disease (IBD). In addition, we studied the cytokine profile of these cells. In the circulation, virtually all CD4(+)CD45RB(high) T cells expressed the naive marker CD45RA, and circulating CD4(+)CD45RB(low) cells expressed the memory marker CD45RO in IBD patients and a control patient population. In contrast, the intestinal CD4(+) CD45RB(high) T cells are in normal controls for 90% CD45RO(+). However, in IBD, 27.7% [Crohn's disease (CD)] and 49% [ulcerative colitis (UC)] of the intestinal CD4(+) CD45RB(high) T cells are CD45RA(+). This special CD4CD45RA(+) T cell in IBD can be found in the lamina propria as well as in lymphoid follicles (confocal laser-scanning microscopy). The CD4(+)CD45RB(high) T lymphocytes produce significantly less interleukin (IL)-10 and IL-4 and produce more tumor necrosis factor alpha than CD45RB(low) T lymphocytes in control patients. CD4(+)CD45RB(low) T cells from IBD patients produced less IL-10 than CD4(+)CD45RB(low) T lymphocytes of controls, and interferon-gamma production by both T lymphocyte subsets was decreased in IBD. These data indicate that CD and UC are characterized by an influx of CD4(+)CD45RB(high) T lymphocytes. These CD4(+)CD45RB(high) T lymphocytes seem to be important in the pathogenesis of IBD, as they produce more proinflammatory cytokines and less anti-inflammatory cytokines compared with CD4(+)CD45RB(low) T lymphocytes.
Primary carcinomas of the small intestine are rare and the mechanism of their pathogenesis is poorly understood. Patients with familial adenomatous polyposis (FAP) have a high risk of developing duodenal carcinomas. The aim of this study is to gain more insight into the development of duodenal carcinomas. Therefore, five FAP-related duodenal carcinomas were characterized for chromosomal and methylation alterations, which were compared to those observed in sporadic duodenal carcinomas. Comparative genomic hybridization (CGH) and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) was performed in 10 primary sporadic and five primary FAP-related duodenal carcinomas. In the FAP-related carcinomas, frequent gains were observed on chromosomes 8, 17 and 19, whereas in sporadic carcinomas they occurred on chromosomes 8, 12, 13 and 20. In 60% of the sporadic carcinomas, gains in the regions of chromosome 12 were observed which were absent in the FAP-related carcinomas (P ¼ 0.04). Hypermethylation was observed in the immunoglobulin superfamily genes member 4 (IGSF4), TIMP metallopeptidase inhibitor 3 (TIMP3), Estrogen receptor 1 (ESR1), adenomatous polyposis coli (APC), H-cadherin (CDH13) and paired box gene 6 (PAX6) genes. Hypermethylation of PAX6 was only observed in FAP-related carcinomas (3/5) and not in sporadic carcinomas (P ¼ 0.02). In conclusion, in contrast to sporadic duodenal carcinomas, gains on chromosome 12 were not observed in duodenal carcinomas of patients with FAP. Identification of the genes in these regions of chromosome 12 could lead to a better understanding of the carcinogenesis pathways leading to sporadic and FAP-related duodenal carcinomas. Furthermore, hypermethylation seems to be a general feature of both FAP-related duodenal carcinomas as well as sporadic duodenal carcinomas with the exception of the PAX6 gene, which is methylated only in FAP-related carcinomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.